Flood wave propagation modeling is of critical importance to advancing water resources management and protecting human life and property. In this study, we investigated how the advection-diffusion routing model perfor...Flood wave propagation modeling is of critical importance to advancing water resources management and protecting human life and property. In this study, we investigated how the advection-diffusion routing model performed in flood wave propagation on a 16 km long downstream section of the Big Piney River, MO. Model performance was based on gaging station data at the upstream and downstream cross sections. We demonstrated with advection-diffusion theory that for small differences in watershed drainage area between the two river cross sections, inflow along the reach mainly contributes to the downstream hydrograph's rising limb and not to the falling limb. The downstream hydrograph's falling limb is primarily determined by the propagated flood wave originating at the upstream cross section. This research suggests the parameter for the advectiondiffusion routing model can be calibrated by fitting the hydrograph falling limb. Application of the advection diffusion model to the flood wave of January 29, 2013 supports our theoretical finding that the propagated flood wave determines the downstream cross section falling limb, and the model has good performance in our test examples.展开更多
Two methods that define the point of baseflow recession onset were compared using storm hydrograph data for 27 storm events that occurred between 1982-1995 in the Upeo watershed located in the Andes mountain range in ...Two methods that define the point of baseflow recession onset were compared using storm hydrograph data for 27 storm events that occurred between 1982-1995 in the Upeo watershed located in the Andes mountain range in central Chile (Figure 1). Three well-known baseflow recession equations were used to determine whether the method we are proposing here, that defines baseflow recession onset as the third inflection point on the logarithmic graph of the falling limb of the storm hydrograph, more accurately models observed data than the most widely used method that defines baseflow onset as the second inflection point on the same graph. Five time intervals were used to modify the recession coefficient in search of a more accurate fit. Results from the coefficient of determination, standard error, Mann-Whitney U test, and Bland-Altman test suggest that redefining baseflow recession onset via the proposed approach more accurately models baseflow recession behavior.展开更多
基金supported by funding from the USDA Forest Service Northern Research Station iTree Spatial Simulation (No. PL-5937)the National Urban and Community Forest Advisory Council iT ree Tool (No. 11-DG-11132544340)The SUNY ESF Department of Environmental Resources Engineering provided computing facilities and logistical support
文摘Flood wave propagation modeling is of critical importance to advancing water resources management and protecting human life and property. In this study, we investigated how the advection-diffusion routing model performed in flood wave propagation on a 16 km long downstream section of the Big Piney River, MO. Model performance was based on gaging station data at the upstream and downstream cross sections. We demonstrated with advection-diffusion theory that for small differences in watershed drainage area between the two river cross sections, inflow along the reach mainly contributes to the downstream hydrograph's rising limb and not to the falling limb. The downstream hydrograph's falling limb is primarily determined by the propagated flood wave originating at the upstream cross section. This research suggests the parameter for the advectiondiffusion routing model can be calibrated by fitting the hydrograph falling limb. Application of the advection diffusion model to the flood wave of January 29, 2013 supports our theoretical finding that the propagated flood wave determines the downstream cross section falling limb, and the model has good performance in our test examples.
文摘Two methods that define the point of baseflow recession onset were compared using storm hydrograph data for 27 storm events that occurred between 1982-1995 in the Upeo watershed located in the Andes mountain range in central Chile (Figure 1). Three well-known baseflow recession equations were used to determine whether the method we are proposing here, that defines baseflow recession onset as the third inflection point on the logarithmic graph of the falling limb of the storm hydrograph, more accurately models observed data than the most widely used method that defines baseflow onset as the second inflection point on the same graph. Five time intervals were used to modify the recession coefficient in search of a more accurate fit. Results from the coefficient of determination, standard error, Mann-Whitney U test, and Bland-Altman test suggest that redefining baseflow recession onset via the proposed approach more accurately models baseflow recession behavior.