The operation of aqueous zinc-ion batteries in flexible energy storage field is plagued by the uncontrollable growth of Zn-dendrite and inevitable freeze of water below 0 ℃.Therefore,it is necessary to design a hydro...The operation of aqueous zinc-ion batteries in flexible energy storage field is plagued by the uncontrollable growth of Zn-dendrite and inevitable freeze of water below 0 ℃.Therefore,it is necessary to design a hydrogel electrolyte with good mechanical property and freezing resistance to uniform the Zn-deposition and resist flexibility loss at low temperature.We find that the mechanical property(strength and toughness)of hydrogel electrolyte has a significant impact on the suppression of dendrite growth and the uniform deposition of zinc ions.Herein,a polyacrylate hydrogel is prepared in one step by ultraviolet(UV)curing method with Zn(CF_(3)SO_(3))_(2)salt and polyvinyl alcohol(PVA)addition to increase the antifreezing ability and mechanical properties.The adsorption of water molecules by 2-hydroxyethyl acrylate(HEA)and PVA reduces the freezing point of the hydrogel,which is beneficial for enhancing the electrochemical stability at low temperature.On this basis,the Zn-symmetrical battery with hydrogel electrolyte has a long lifespan of 4710 h at 0.5 mA·cm^(-2)and 0.5 mAh·cm^(-2)at room temperature.Furthermore,the hydrogel electrolyte exhibits an outstanding stability at low temperature of^(-2)0 ℃,the lifespan of symmetrical battery reaches to 4000 h at 0.5 mA·cm^(-2)and 0.5 mAh·cm^(-2).The assembled full cell with NaV3O8·1.5H_(2)O(NVO)cathode and hydrogel electrolyte possesses a high capacity retention ratio of 77%after 10,000 cycles at^(-2)0 ℃.The flexible cell can power light-emitting diode(LED)lamp under bending,warping and cutting without liquid leakage and an electronic watch at the operating temperature of^(-2)0 ℃.展开更多
The anti-freezing strategy of hydrogels and their self-healing structure are often contradictory,it is vital to break through the molecular structure to design and construct hydrogels with intrinsic anti-freezing/self...The anti-freezing strategy of hydrogels and their self-healing structure are often contradictory,it is vital to break through the molecular structure to design and construct hydrogels with intrinsic anti-freezing/self-healing for meeting the rapid development of flexible and wearable devices in diverse service conditions.Herein,we design a new hydrogel electrolyte(AF/SH-Hydrogel)with intrinsic anti-freezing/self-healing capabilities by introducing ethylene glycol molecules,dynamic chemical bonding(disulfide bond),and supramolecular interaction(multi-hydrogen bond)into the polyacrylamide molecular chain.Thanks to the exceptional freeze resistance(84%capacity retention at-20℃)and intrinsic self-healing capabilities(95%capacity retention after 5 cutting/self-healing cycles),the obtained AF/SH-Hydrogel makes the zinc||manganese dioxide cell an economically feasible battery for the state-of-the-art applications.The Zn||AF/SH-Hydrogel||MnO_(2)device offers a near-theoretical specific capacity of 285 m A h g^(-1)at 0.1 A g^(-1)(Coulombic efficiency≈100%),as well as good self-healing capability and mechanical flexibility in an ice bath.This work provides insight that can be utilized to develop multifunctional hydrogel electrolytes for application in next generation of self-healable and freeze-resistance smart aqueous energy storage devices.展开更多
A metal electrode is a significant component of a zinc–air battery(ZAB),but the metal material is usually not elastic,which severely restricts the application of flexible and stretchable ZABs in the field of wearable...A metal electrode is a significant component of a zinc–air battery(ZAB),but the metal material is usually not elastic,which severely restricts the application of flexible and stretchable ZABs in the field of wearable electronic devices.Herein,we report a flexible and stretchable metal-coated textile prepared by a dynamic stretching–electroplating based on a wavy spandex textile substrate.Benefiting from the unique woven and wavy structure,the metal-coated textile shows a high stretchability of 100%and stable conductivity.In situ scanning electron microscope observation during stretching showed that the tensile strain of the metal-coated textile is mainly attributed to the deformation of the microfiber network at the bottom position of the wave structure.In addition,a sodium carboxymethyl cellulose–polyacrylic acid–potassium hydroxide composite hydrogel has been used as the electrolyte.This hydrogel shows excellent ionic conductivity,mechanical properties,and water retention properties,which makes it suitable for the semi-open system of ZAB.Furthermore,a flexible and stretchable sandwich-structure ZAB,assembled using the above-mentioned electrodes and electrolyte,operates stably even under rapid stretching/releasing cycle deformation.Because of its facile preparation and low cost,this flexible and stretchable ZAB is suitable for fabrication of large-area batteries to obtain higher output current and power to drive wearable electronic devices.展开更多
Hydrogel electrolytes hold great potential in flexible zinc ion supercapacitors(ZICs)due to their high conductivity,good safety,and flexibility.However,freezing of electrolytes at low temperature(subzero)leads to dras...Hydrogel electrolytes hold great potential in flexible zinc ion supercapacitors(ZICs)due to their high conductivity,good safety,and flexibility.However,freezing of electrolytes at low temperature(subzero)leads to drastic reduction in ionic conductivity and mechanical properties that deteriorates the performance of flexible ZICs.Besides,the mechanical fracture during arbitrary deformations significantly prunes out the lifespan of the flexible device.Herein,a Zn^(2+)and Li^(+)co-doped,polypyrrole-dopamine decorated Sb_(2)S_(3)incorporated,and polyvinyl alcohol/poly(N-(2-hydroxyethyl)acrylamide)double-network hydrogel electrolyte is constructed with favorable mechanical reliability,anti-freezing,and self-healing ability.In addition,it delivers ultra-high ionic conductivity of 8.6 and 3.7 S m^(-1)at 20 and−30°C,respectively,and displays excellent mechanical properties to withstand tensile stress of 1.85 MPa with tensile elongation of 760%,together with fracture energy of 5.14 MJ m^(-3).Notably,the fractured hydrogel electrolyte can recover itself after only 90 s of infrared illumination,while regaining 83%of its tensile strain and almost 100%of its ionic conductivity during−30–60°C.Moreover,ZICs coupled with this hydrogel electrolyte not only show a wide voltage window(up to 2 V),but also provide high energy density of 230 Wh kg^(-1)at power density of 500 W kg^(-1)with a capacity retention of 86.7%after 20,000 cycles under 20°C.Furthermore,the ZICs are able to retain excellent capacity even under various mechanical deformation at−30°C.This contribution will open up new insights into design of advanced wearable flexible electronics with environmental adaptability and long-life span.展开更多
Zn metal anode suffers from dendrite issues and passive byproducts,which severely plagues the practical application of aqueous Zn metal batteries.Herein,a polyzwitterionic cross-linked double network hydrogel electrol...Zn metal anode suffers from dendrite issues and passive byproducts,which severely plagues the practical application of aqueous Zn metal batteries.Herein,a polyzwitterionic cross-linked double network hydrogel electrolyte composed of physical crosslinking(hyaluronic acid)and chemical crosslinking(synthetic zwitterionic monomer copolymerized with acrylamide)is introduced to overcome these obstacles.On the one hand,highly hydrophilic physical network provides an energy dissipation channel to buffer stress and builds a H_(2)O-poor interface to avoid side reactions.On the other hand,the charged groups(sulfonic and imidazolyl)in chemical crosslinking structure build anion/cation transport channels to boost ions’kinetics migration and regulate the typical solvent structure[Zn(H_(2)O)_(6)]^(2+)to R-SO_(3)^(−)[Zn(H_(2)O)_(4)]^(2+),with uniform electric field distribution and significant resistance to dendrites and parasitic reactions.Based on the above functions,the symmetric zinc cell exhibits superior cycle stability for more than 420 h at a high current density of 5 mA·cm^(−2),and Zn||MnO_(2)full cell has a reversible specific capacity of 150 mAh·g^(−1)after 1000 cycles at 2 C with this hydrogel electrolyte.Furthermore,the pouch cell delivers impressive flexibility and cyclability for energy-storage applications.展开更多
Aqueous rechargeable Zn-metal batteries(ARZBs)are considered one of the most promising candidates for grid-scale energy storage.However,their widespread commercial application is largely plagued by three major challen...Aqueous rechargeable Zn-metal batteries(ARZBs)are considered one of the most promising candidates for grid-scale energy storage.However,their widespread commercial application is largely plagued by three major challenges:The uncontrollable Zn dendrites,notorious parasitic side reactions,and sluggish Zn^(2+) ion transfer.To address these issues,we design a sustainable dual crosslinked cellulose hydrogel electrolyte,which has excellent mechanical strength to inhibit dendrite formation,high Zn^(2+) ions binding capacity to suppress side reaction,and abundant porous structure to facilitate Zn^(2+) ions migration.Consequently,the Zn||Zn cell with the hydrogel electrolyte can cycle stably for more than 400 h under a high current density of 10 mA cm^(−2).Moreover,the hydrogel electrolyte also enables the Zn||polyaniline cell to achieve high-rate and long-term cycling performance(>2000 cycles at 2000 mA g^(−1)).Remarkably,the hydrogel electrolyte is easily accessible and biodegradable,making the ARZBs attractive in terms of scalability and sustainability.展开更多
This review article delves into the development of electrolytes for flexible zinc-air batteries(FZABs),a critical component driving the advancement of flexible electronics.We started by surveying the current advanceme...This review article delves into the development of electrolytes for flexible zinc-air batteries(FZABs),a critical component driving the advancement of flexible electronics.We started by surveying the current advancements in electrolyte technologies,including solid-state and gel-based types,and their contributions to enhance the flexibility,efficiency,and durability of FZABs.Secondly,we explored the challenges in this domain,focusing on maintaining electrolyte stability under mechanical stress,ensuring compatibility with flexible substrates,optimizing ion conductivity,and under harsh environmental conditions.Furthermore,the key issues regarding interface details between electrolyte and the electrodes are covered as well.We then discussed the future of electrolyte development in FZABs,highlighting potential avenues such as materials development,sustainability,in-situ studies,and battery integration.This review offers an in-depth overview of the advancements,challenges,and potential breakthroughs in creating electrolytes for FZABs over the past five years.It serves as a guide for both researchers and industry professionals in this dynamic area.展开更多
Hydrogen evolution reaction(HER),zinc corrosion,and dendrites growth on zinc metal anode are the major issues limiting the practical applications of zinc-ion batteries.Herein,an in-situ physical/chemical cross-linked ...Hydrogen evolution reaction(HER),zinc corrosion,and dendrites growth on zinc metal anode are the major issues limiting the practical applications of zinc-ion batteries.Herein,an in-situ physical/chemical cross-linked hydrogel electrolyte(carrageenan/polyacrylamide/ZnSO_(4),denoted as CPZ)has been developed to stabilize the zinc anode-electrolyte interface,which can eliminate side reactions and prevent dendrites growth.The in-situ CPZ hydrogel electrolyte improves the reversibility of zinc anode due to eliminating side reactions caused by active water molecules.Furthermore,the electrostatic interaction between the SO_(4)^(-)groups in CPZ and Zn^(2+)can encourage the preferential deposition of zinc atoms on(002)crystal plane,which achieve dendrite-free and homogeneous zinc deposition.The in-situ hydrogel electrolyte offers a streamlined approach to battery manufacturing by allowing for direct integration into the battery.Subsequently,the Zn//Zn half battery with CPZ hydrogel electrolyte can enable an ultra-long cycle over 5500 h at a current density of 0.5 mA cm^(-2),and the Zn//Cu half battery reach an average coulombic efficiency of 99.37%.The Zn//V_(2)O_5-GO full battery with CPZ hydrogel electrolyte demonstrates94.5%of capacity retention after 2100 cycles.This study is expected to open new thought for the development of commercial hydrogel electrolytes for low-cost and long-life zinc-ion batteries.展开更多
Rechargeable Zn-air batteries(ZAB)have drawn extensive attention due to their eco-friendliness and safety.However,the lack of high-performance and low-cost oxygen redox reactions(OER and ORR)catalysts has become one o...Rechargeable Zn-air batteries(ZAB)have drawn extensive attention due to their eco-friendliness and safety.However,the lack of high-performance and low-cost oxygen redox reactions(OER and ORR)catalysts has become one of the main stumbling blocks in their development.Herein,we successfully fabricate a CoFe nanobubble encapsulated in nitrogen-doped carbon nanocage on wood carbon support(CoFe@NC/WC)via pyrolysis of a novel Prussian blue analog(PBA)/spruce precursor.The hierarchical CoFe@NC/WC catalyst exhibits an excellent potential difference of 0.74 V between the OER potential at 10 mA cm^(-2)and half-wave potential of ORR in 0.1 M KOH,comparable to recently reported preeminent electrocatalysts.Further,CoFe@NC/WC shows outstanding electrochemical performance in liquid ZAB,with a peak power density of 138.9 mW cm^(-2)and a specific capacity of 763.5 mAh g^(-1).More importantly,a bacterial cellulose nanofiber reinforced polyacrylic acid(BC-PAA)hydrogel electrolyte shows ultrahigh tensile-breaking stress of 1.58 MPa.In conjunction with the as-prepared CoFe@NC/WC catalyst,BC-PAA-based wearable ZAB displays impressive rechargeability and foldability,and can power portable electronics,such as electronic timer and mobile phone,in bent states.This work provides a new approach toward high-activity and low-cost catalysts for ZAB.展开更多
Hydrogel is frequently used as a solid electrolyte for all solid-state supercapacitors(SCs)because of its liquid-like ion-transport property and high conformability.However,due to the higher water content,the hydrogel...Hydrogel is frequently used as a solid electrolyte for all solid-state supercapacitors(SCs)because of its liquid-like ion-transport property and high conformability.However,due to the higher water content,the hydrogel electrolyte undergoes inevitable freezing and/or dehydration with climate change.Herein,polypyrrole/carbon all-solid-state SCs(PCSCs)were developed based on a hierarchical polypyrrole/carbon nanotube electrode and a highly stretchable double-network polymer hydrogel electrolyte with LiCl/ethylene glycol as a mixed solvent.The PCSCs showed excellent electrochemical performance and cycle stability with a wide operating temperature.The specific capacitances could reach 202.2 and 112.3 mF cm^(−2) at current densities of 0.5 and 3.0 mA cm^(−2),respectively.Meanwhile,the PCSCs showed outstanding mechanical properties in maintaining a high areal capacitance under deformations of bending and tension.The excellent water retention of the device also ensured the stable electrochemical performance of PCSCs in a wide temperature range(30–80℃),which could potentially represent a reliable application in various harsh environments.展开更多
Flexible aqueous batteries have been thriving with the growing demand for wearable and portable electrical devices.In particular,flexible aqueous mul tivalent ion batteries(FAMIBs),the charge carriers of which include...Flexible aqueous batteries have been thriving with the growing demand for wearable and portable electrical devices.In particular,flexible aqueous mul tivalent ion batteries(FAMIBs),the charge carriers of which include Zn^(2+),Al^(3+),Mg^(2+),and Ca^(2+),have great potential for development owing to their high safety,high elemental abundance in the Earth's crust,and a multi-electron redox mechanism with a high theoretical specific capacity.Therefore,for a comprehensive understanding of this developing field,it is necessary to summarize the recent research progress of FAMIBs in a timely manner.Herein,the advancements of the state-of-the-art FAMIBs are reviewed,and the prospects toward this field are also proposed.This study focuses on the rational material and configuration design for FAMIBs in recent studies to achieve high battery performances under deformation conditions,which is elaborated on by classification of the anode,cathode,hydrogel electrolyte,and configurations of FAMIBs.Besides,the electrochemical performance of FAMIBs under flexible conditions is also reviewed from the perspective of their working voltage,specific capacity,and cycling stability.Finally,the ap proaches to improve the performance of FAMIBs are comprehensively eval uated,followed by the outlook on the challenges and opportunities in future development of FAMIBs.展开更多
Safe and long lifespan batteries facilitate the development of portable electronics and electric vehicles.Owing to the low-cost,naturally abundance,and trivalent charge carrier of aluminum with the highest theoretical...Safe and long lifespan batteries facilitate the development of portable electronics and electric vehicles.Owing to the low-cost,naturally abundance,and trivalent charge carrier of aluminum with the highest theoretical volumetric capacity,rechargeable aqueous aluminum-ion-based batteries are considered as promising next-generation secondary batteries.However,traditional electrolytes and frequent collapse of the host structure of electrode materials greatly jeopardize the cycle stability of the batteries.Here,we develop a novel hydrogel-based electrolyte coupled with stable layered intercalation electrodes for the first time to fabricate a highly safe and flexible rechargeable hybrid Al^(3^(+))/H^(+)battery.The as-fabricated hybrid-ion battery(HIB)delivers a high specific capacity of 125 mAh·g^(−1) at 0.1 A·g^(−1) and exhibits an unprecedented super long-term cycling stability with no capacity fading over 10,000 cycles at 2 A·g^(−1).In addition,the hydrogel-based electrolyte possesses smart function of thermoresponsive switching,which can effectively prevent thermal runaway for the batteries.The unprecedented long cycle stability,highly intrinsic safety as well as low-cost indicate that the flexible aqueous HIBs are promising for applications.展开更多
基金support from the National Natural Science Foundation of China(Nos.52322708,52377031 and 52002358)the National Natural Science Foundation of Henan(No.242300421421)State Key Laboratory of Advanced Electromagnetic Technology(No.AET 2023KF005).
文摘The operation of aqueous zinc-ion batteries in flexible energy storage field is plagued by the uncontrollable growth of Zn-dendrite and inevitable freeze of water below 0 ℃.Therefore,it is necessary to design a hydrogel electrolyte with good mechanical property and freezing resistance to uniform the Zn-deposition and resist flexibility loss at low temperature.We find that the mechanical property(strength and toughness)of hydrogel electrolyte has a significant impact on the suppression of dendrite growth and the uniform deposition of zinc ions.Herein,a polyacrylate hydrogel is prepared in one step by ultraviolet(UV)curing method with Zn(CF_(3)SO_(3))_(2)salt and polyvinyl alcohol(PVA)addition to increase the antifreezing ability and mechanical properties.The adsorption of water molecules by 2-hydroxyethyl acrylate(HEA)and PVA reduces the freezing point of the hydrogel,which is beneficial for enhancing the electrochemical stability at low temperature.On this basis,the Zn-symmetrical battery with hydrogel electrolyte has a long lifespan of 4710 h at 0.5 mA·cm^(-2)and 0.5 mAh·cm^(-2)at room temperature.Furthermore,the hydrogel electrolyte exhibits an outstanding stability at low temperature of^(-2)0 ℃,the lifespan of symmetrical battery reaches to 4000 h at 0.5 mA·cm^(-2)and 0.5 mAh·cm^(-2).The assembled full cell with NaV3O8·1.5H_(2)O(NVO)cathode and hydrogel electrolyte possesses a high capacity retention ratio of 77%after 10,000 cycles at^(-2)0 ℃.The flexible cell can power light-emitting diode(LED)lamp under bending,warping and cutting without liquid leakage and an electronic watch at the operating temperature of^(-2)0 ℃.
基金supported by the link project of the National Natural Science Foundation of China(52002052 and 22209020)the Key Research and Development Project of Science and Technology Department of Sichuan Province(2022YFSY0004)+2 种基金the Opening project of the State Key Laboratory of New Textile Materials and Advanced Processing Technology(FZ2021009)the Natural Science Foundation of Sichuan Province(2023NSFSC0995)the Natural Science Foundation of Hunan Province(2022JJ30227)。
文摘The anti-freezing strategy of hydrogels and their self-healing structure are often contradictory,it is vital to break through the molecular structure to design and construct hydrogels with intrinsic anti-freezing/self-healing for meeting the rapid development of flexible and wearable devices in diverse service conditions.Herein,we design a new hydrogel electrolyte(AF/SH-Hydrogel)with intrinsic anti-freezing/self-healing capabilities by introducing ethylene glycol molecules,dynamic chemical bonding(disulfide bond),and supramolecular interaction(multi-hydrogen bond)into the polyacrylamide molecular chain.Thanks to the exceptional freeze resistance(84%capacity retention at-20℃)and intrinsic self-healing capabilities(95%capacity retention after 5 cutting/self-healing cycles),the obtained AF/SH-Hydrogel makes the zinc||manganese dioxide cell an economically feasible battery for the state-of-the-art applications.The Zn||AF/SH-Hydrogel||MnO_(2)device offers a near-theoretical specific capacity of 285 m A h g^(-1)at 0.1 A g^(-1)(Coulombic efficiency≈100%),as well as good self-healing capability and mechanical flexibility in an ice bath.This work provides insight that can be utilized to develop multifunctional hydrogel electrolytes for application in next generation of self-healable and freeze-resistance smart aqueous energy storage devices.
基金National Natural Science Foundation of China and Guangdong Province,Grant/Award Number:U1601216National Natural Science Foundation for Excellent Young Scholar,Grant/Award Number:51722403+3 种基金National Youth Talent Support Program“131”First Level Innovative Talents Training Project in TianjinNational Natural Science Foundation for Distinguished Young Scholar,Grant/Award Number:52125404Tianjin Natural Science Foundation for Distinguished Young Scholar,Grant/Award Number:18JCJQJC46500。
文摘A metal electrode is a significant component of a zinc–air battery(ZAB),but the metal material is usually not elastic,which severely restricts the application of flexible and stretchable ZABs in the field of wearable electronic devices.Herein,we report a flexible and stretchable metal-coated textile prepared by a dynamic stretching–electroplating based on a wavy spandex textile substrate.Benefiting from the unique woven and wavy structure,the metal-coated textile shows a high stretchability of 100%and stable conductivity.In situ scanning electron microscope observation during stretching showed that the tensile strain of the metal-coated textile is mainly attributed to the deformation of the microfiber network at the bottom position of the wave structure.In addition,a sodium carboxymethyl cellulose–polyacrylic acid–potassium hydroxide composite hydrogel has been used as the electrolyte.This hydrogel shows excellent ionic conductivity,mechanical properties,and water retention properties,which makes it suitable for the semi-open system of ZAB.Furthermore,a flexible and stretchable sandwich-structure ZAB,assembled using the above-mentioned electrodes and electrolyte,operates stably even under rapid stretching/releasing cycle deformation.Because of its facile preparation and low cost,this flexible and stretchable ZAB is suitable for fabrication of large-area batteries to obtain higher output current and power to drive wearable electronic devices.
基金supported by the National Natural Science Foundation of China(52174247 and 22302066)“Hejian”Innovative Talent Project of Hunan Province(No.2022RC1088)+1 种基金the Hunan Provincial Natural Science Foundation(2023JJ40255)the Scientific Research Foundation of Hunan Provincial Education(22B0599 and 23A0442)。
文摘Hydrogel electrolytes hold great potential in flexible zinc ion supercapacitors(ZICs)due to their high conductivity,good safety,and flexibility.However,freezing of electrolytes at low temperature(subzero)leads to drastic reduction in ionic conductivity and mechanical properties that deteriorates the performance of flexible ZICs.Besides,the mechanical fracture during arbitrary deformations significantly prunes out the lifespan of the flexible device.Herein,a Zn^(2+)and Li^(+)co-doped,polypyrrole-dopamine decorated Sb_(2)S_(3)incorporated,and polyvinyl alcohol/poly(N-(2-hydroxyethyl)acrylamide)double-network hydrogel electrolyte is constructed with favorable mechanical reliability,anti-freezing,and self-healing ability.In addition,it delivers ultra-high ionic conductivity of 8.6 and 3.7 S m^(-1)at 20 and−30°C,respectively,and displays excellent mechanical properties to withstand tensile stress of 1.85 MPa with tensile elongation of 760%,together with fracture energy of 5.14 MJ m^(-3).Notably,the fractured hydrogel electrolyte can recover itself after only 90 s of infrared illumination,while regaining 83%of its tensile strain and almost 100%of its ionic conductivity during−30–60°C.Moreover,ZICs coupled with this hydrogel electrolyte not only show a wide voltage window(up to 2 V),but also provide high energy density of 230 Wh kg^(-1)at power density of 500 W kg^(-1)with a capacity retention of 86.7%after 20,000 cycles under 20°C.Furthermore,the ZICs are able to retain excellent capacity even under various mechanical deformation at−30°C.This contribution will open up new insights into design of advanced wearable flexible electronics with environmental adaptability and long-life span.
基金the Science Technology and Innovation Team in University of Henan Province(No.24IRTSTHN002)the National Natural Science Foundation of China(No.22279121)China Postdoctoral Science Foundation(No.2022M712863),and DFT calculations were supported by the National Supercomputing Centre in Zhengzhou and the funding of Zhengzhou University.
文摘Zn metal anode suffers from dendrite issues and passive byproducts,which severely plagues the practical application of aqueous Zn metal batteries.Herein,a polyzwitterionic cross-linked double network hydrogel electrolyte composed of physical crosslinking(hyaluronic acid)and chemical crosslinking(synthetic zwitterionic monomer copolymerized with acrylamide)is introduced to overcome these obstacles.On the one hand,highly hydrophilic physical network provides an energy dissipation channel to buffer stress and builds a H_(2)O-poor interface to avoid side reactions.On the other hand,the charged groups(sulfonic and imidazolyl)in chemical crosslinking structure build anion/cation transport channels to boost ions’kinetics migration and regulate the typical solvent structure[Zn(H_(2)O)_(6)]^(2+)to R-SO_(3)^(−)[Zn(H_(2)O)_(4)]^(2+),with uniform electric field distribution and significant resistance to dendrites and parasitic reactions.Based on the above functions,the symmetric zinc cell exhibits superior cycle stability for more than 420 h at a high current density of 5 mA·cm^(−2),and Zn||MnO_(2)full cell has a reversible specific capacity of 150 mAh·g^(−1)after 1000 cycles at 2 C with this hydrogel electrolyte.Furthermore,the pouch cell delivers impressive flexibility and cyclability for energy-storage applications.
基金This work was financially supported by the National Natural Science Foundation of China(52173106 and 22375154).
文摘Aqueous rechargeable Zn-metal batteries(ARZBs)are considered one of the most promising candidates for grid-scale energy storage.However,their widespread commercial application is largely plagued by three major challenges:The uncontrollable Zn dendrites,notorious parasitic side reactions,and sluggish Zn^(2+) ion transfer.To address these issues,we design a sustainable dual crosslinked cellulose hydrogel electrolyte,which has excellent mechanical strength to inhibit dendrite formation,high Zn^(2+) ions binding capacity to suppress side reaction,and abundant porous structure to facilitate Zn^(2+) ions migration.Consequently,the Zn||Zn cell with the hydrogel electrolyte can cycle stably for more than 400 h under a high current density of 10 mA cm^(−2).Moreover,the hydrogel electrolyte also enables the Zn||polyaniline cell to achieve high-rate and long-term cycling performance(>2000 cycles at 2000 mA g^(−1)).Remarkably,the hydrogel electrolyte is easily accessible and biodegradable,making the ARZBs attractive in terms of scalability and sustainability.
基金the Agency for Science,Technology and Research(A*STAR),Science and Engineering Research Council,and A*ccelerate Technologies for this work(No.GAP/2019/00314).
文摘This review article delves into the development of electrolytes for flexible zinc-air batteries(FZABs),a critical component driving the advancement of flexible electronics.We started by surveying the current advancements in electrolyte technologies,including solid-state and gel-based types,and their contributions to enhance the flexibility,efficiency,and durability of FZABs.Secondly,we explored the challenges in this domain,focusing on maintaining electrolyte stability under mechanical stress,ensuring compatibility with flexible substrates,optimizing ion conductivity,and under harsh environmental conditions.Furthermore,the key issues regarding interface details between electrolyte and the electrodes are covered as well.We then discussed the future of electrolyte development in FZABs,highlighting potential avenues such as materials development,sustainability,in-situ studies,and battery integration.This review offers an in-depth overview of the advancements,challenges,and potential breakthroughs in creating electrolytes for FZABs over the past five years.It serves as a guide for both researchers and industry professionals in this dynamic area.
基金supported by the Key Program of Natural Science Foundation of Gansu Province (23JRRA789)the Major Science and Technology Project of Gansu Province (22ZD6GA008)。
文摘Hydrogen evolution reaction(HER),zinc corrosion,and dendrites growth on zinc metal anode are the major issues limiting the practical applications of zinc-ion batteries.Herein,an in-situ physical/chemical cross-linked hydrogel electrolyte(carrageenan/polyacrylamide/ZnSO_(4),denoted as CPZ)has been developed to stabilize the zinc anode-electrolyte interface,which can eliminate side reactions and prevent dendrites growth.The in-situ CPZ hydrogel electrolyte improves the reversibility of zinc anode due to eliminating side reactions caused by active water molecules.Furthermore,the electrostatic interaction between the SO_(4)^(-)groups in CPZ and Zn^(2+)can encourage the preferential deposition of zinc atoms on(002)crystal plane,which achieve dendrite-free and homogeneous zinc deposition.The in-situ hydrogel electrolyte offers a streamlined approach to battery manufacturing by allowing for direct integration into the battery.Subsequently,the Zn//Zn half battery with CPZ hydrogel electrolyte can enable an ultra-long cycle over 5500 h at a current density of 0.5 mA cm^(-2),and the Zn//Cu half battery reach an average coulombic efficiency of 99.37%.The Zn//V_(2)O_5-GO full battery with CPZ hydrogel electrolyte demonstrates94.5%of capacity retention after 2100 cycles.This study is expected to open new thought for the development of commercial hydrogel electrolytes for low-cost and long-life zinc-ion batteries.
基金supported by the Innovation and Technology Commission(Grant no.PRP/032/20FX)the RFBR(Grant no.20-03-00772)
文摘Rechargeable Zn-air batteries(ZAB)have drawn extensive attention due to their eco-friendliness and safety.However,the lack of high-performance and low-cost oxygen redox reactions(OER and ORR)catalysts has become one of the main stumbling blocks in their development.Herein,we successfully fabricate a CoFe nanobubble encapsulated in nitrogen-doped carbon nanocage on wood carbon support(CoFe@NC/WC)via pyrolysis of a novel Prussian blue analog(PBA)/spruce precursor.The hierarchical CoFe@NC/WC catalyst exhibits an excellent potential difference of 0.74 V between the OER potential at 10 mA cm^(-2)and half-wave potential of ORR in 0.1 M KOH,comparable to recently reported preeminent electrocatalysts.Further,CoFe@NC/WC shows outstanding electrochemical performance in liquid ZAB,with a peak power density of 138.9 mW cm^(-2)and a specific capacity of 763.5 mAh g^(-1).More importantly,a bacterial cellulose nanofiber reinforced polyacrylic acid(BC-PAA)hydrogel electrolyte shows ultrahigh tensile-breaking stress of 1.58 MPa.In conjunction with the as-prepared CoFe@NC/WC catalyst,BC-PAA-based wearable ZAB displays impressive rechargeability and foldability,and can power portable electronics,such as electronic timer and mobile phone,in bent states.This work provides a new approach toward high-activity and low-cost catalysts for ZAB.
基金NSF of Jiangsu Province,Grant/Award Number:BK20190688NSF of Jiangsu Higher Education Institutions,Grant/Award Number:21KJB430039+1 种基金NSF of Shandong Province,Grant/Award Number:ZR2020KB018Taishan Scholars”Construction Special Fund of Shandong Province,and the Industrial Alliance Fund of Shandong Provincial Key Laboratory,Grant/Award Number:SDKL016038。
文摘Hydrogel is frequently used as a solid electrolyte for all solid-state supercapacitors(SCs)because of its liquid-like ion-transport property and high conformability.However,due to the higher water content,the hydrogel electrolyte undergoes inevitable freezing and/or dehydration with climate change.Herein,polypyrrole/carbon all-solid-state SCs(PCSCs)were developed based on a hierarchical polypyrrole/carbon nanotube electrode and a highly stretchable double-network polymer hydrogel electrolyte with LiCl/ethylene glycol as a mixed solvent.The PCSCs showed excellent electrochemical performance and cycle stability with a wide operating temperature.The specific capacitances could reach 202.2 and 112.3 mF cm^(−2) at current densities of 0.5 and 3.0 mA cm^(−2),respectively.Meanwhile,the PCSCs showed outstanding mechanical properties in maintaining a high areal capacitance under deformations of bending and tension.The excellent water retention of the device also ensured the stable electrochemical performance of PCSCs in a wide temperature range(30–80℃),which could potentially represent a reliable application in various harsh environments.
基金supported by the National Natural Science Foundation of China(51822201,52172178,and 21972007).
文摘Flexible aqueous batteries have been thriving with the growing demand for wearable and portable electrical devices.In particular,flexible aqueous mul tivalent ion batteries(FAMIBs),the charge carriers of which include Zn^(2+),Al^(3+),Mg^(2+),and Ca^(2+),have great potential for development owing to their high safety,high elemental abundance in the Earth's crust,and a multi-electron redox mechanism with a high theoretical specific capacity.Therefore,for a comprehensive understanding of this developing field,it is necessary to summarize the recent research progress of FAMIBs in a timely manner.Herein,the advancements of the state-of-the-art FAMIBs are reviewed,and the prospects toward this field are also proposed.This study focuses on the rational material and configuration design for FAMIBs in recent studies to achieve high battery performances under deformation conditions,which is elaborated on by classification of the anode,cathode,hydrogel electrolyte,and configurations of FAMIBs.Besides,the electrochemical performance of FAMIBs under flexible conditions is also reviewed from the perspective of their working voltage,specific capacity,and cycling stability.Finally,the ap proaches to improve the performance of FAMIBs are comprehensively eval uated,followed by the outlook on the challenges and opportunities in future development of FAMIBs.
基金This research was supported by the National Natural Science Foundation of China (No. 21805063)the Natural Science Foundation of Guangdong Province for Distinguished Young Scholars (No. 2018B030306022)+1 种基金the Economic, Trade and Information Commission of Shenzhen Municipality through the Graphene Manufacture Innovation Center (No. 201901161514)and Research Innovation Fund of Harbin Institute of Technology (No. HIT.NSRIF.2020063).
文摘Safe and long lifespan batteries facilitate the development of portable electronics and electric vehicles.Owing to the low-cost,naturally abundance,and trivalent charge carrier of aluminum with the highest theoretical volumetric capacity,rechargeable aqueous aluminum-ion-based batteries are considered as promising next-generation secondary batteries.However,traditional electrolytes and frequent collapse of the host structure of electrode materials greatly jeopardize the cycle stability of the batteries.Here,we develop a novel hydrogel-based electrolyte coupled with stable layered intercalation electrodes for the first time to fabricate a highly safe and flexible rechargeable hybrid Al^(3^(+))/H^(+)battery.The as-fabricated hybrid-ion battery(HIB)delivers a high specific capacity of 125 mAh·g^(−1) at 0.1 A·g^(−1) and exhibits an unprecedented super long-term cycling stability with no capacity fading over 10,000 cycles at 2 A·g^(−1).In addition,the hydrogel-based electrolyte possesses smart function of thermoresponsive switching,which can effectively prevent thermal runaway for the batteries.The unprecedented long cycle stability,highly intrinsic safety as well as low-cost indicate that the flexible aqueous HIBs are promising for applications.