TiN coatings were deposited using a hybrid home-made high power impulse magnetron sputtering(HIPIMS)technique at room temperature.The effects of substrate negative bias voltage on the deposition rate,composition,cryst...TiN coatings were deposited using a hybrid home-made high power impulse magnetron sputtering(HIPIMS)technique at room temperature.The effects of substrate negative bias voltage on the deposition rate,composition,crystal structure,surface morphology,microstructure and mechanical properties were investigated.The results revealed that with the increase in bias voltage from-50 to-400 V,TiN coatings exhibited a trend of densification and the crystal structure gradually evolved from(111) orientation to(200)orientation.The growth rate decreased from about 12.2 nm to 7.8 nm per minute with the coating densification.When the bias voltage was-300 V,the minimum surface roughness value of 10.1 nm was obtained,and the hardness and Young’s modulus of TiN coatings reached the maximum value of 17.4 GPa and 263.8 GPa,respectively.Meanwhile,the highest adhesion of 59 N was obtained between coating and substrate.展开更多
本文设计了一种基于磁/电介质混合型基体的宽带超材料吸波体,吸波体基本单元由电阻膜、磁/电介质混合型基体以及金属背板组成.采用时域有限差分法对超材料吸波体吸波性能进行了仿真,使用遗传算法优化了反射率小于-10 d B的带宽.仿真结...本文设计了一种基于磁/电介质混合型基体的宽带超材料吸波体,吸波体基本单元由电阻膜、磁/电介质混合型基体以及金属背板组成.采用时域有限差分法对超材料吸波体吸波性能进行了仿真,使用遗传算法优化了反射率小于-10 d B的带宽.仿真结果表明,当超材料吸波体厚度为2.5 mm时,在7.8—18 GHz频率范围内的反射率小于-10 d B,具有厚度薄、宽带、极化不敏感等优点.通过等效电路模型对其工作机理进行了分析与讨论.最后制备样品进行测试,测试结果与仿真结果一致.展开更多
The emergence of Li–Mg hybrid batteries has been receiving attention,owing to their enhanced electrochemical kinetics and reduced overpotential.Nevertheless,the persistent challenge of uneven Mg electrodeposition rem...The emergence of Li–Mg hybrid batteries has been receiving attention,owing to their enhanced electrochemical kinetics and reduced overpotential.Nevertheless,the persistent challenge of uneven Mg electrodeposition remains a significant impediment to their practical integration.Herein,we developed an ingenious approach that centered around epitaxial electrocrystallization and meticulously controlled growth of magnesium crystals on a specialized MgMOF substrate.The chosen MgMOF substrate demonstrated a robust affinity for magnesium and showed minimal lattice misfit with Mg,establishing the crucial prerequisites for successful heteroepitaxial electrocrystallization.Moreover,the incorporation of periodic electric fields and successive nanochannels within the MgMOF structure created a spatially confined environment that considerably promoted uniform magnesium nucleation at the molecular scale.Taking inspiration from the“blockchain”concept prevalent in the realm of big data,we seamlessly integrated a conductive polypyrrole framework,acting as a connecting“chain,”to interlink the“blocks”comprising the MgMOF cavities.This innovative design significantly amplified charge‐transfer efficiency,thereby increasing overall electrochemical kinetics.The resulting architecture(MgMOF@PPy@CC)served as an exceptional host for heteroepitaxial Mg electrodeposition,showcasing remarkable electrostripping/plating kinetics and excellent cycling performance.Surprisingly,a symmetrical cell incorporating the MgMOF@PPy@CC electrode demonstrated impressive stability even under ultrahigh current density conditions(10mAcm–2),maintaining operation for an extended 1200 h,surpassing previously reported benchmarks.Significantly,on coupling the MgMOF@PPy@CC anode with a Mo_(6)S_(8) cathode,the assembled battery showed an extended lifespan of 10,000 cycles at 70 C,with an outstanding capacity retention of 96.23%.This study provides a fresh perspective on the rational design of epitaxial electrocrystallization driven by metal–organic 展开更多
With the advent of tissue engineering and biomedicine,the creation of extracellular matrix(ECM)biomaterials for in vitro applications has become a prominent and promising strategy.These ECM materials provide physical,...With the advent of tissue engineering and biomedicine,the creation of extracellular matrix(ECM)biomaterials for in vitro applications has become a prominent and promising strategy.These ECM materials provide physical,biochemical,and mechanical properties that guide cellular behaviors,such as proliferation,differentiation,migration,and apoptosis.Because micro-and nano-patterned materials have a unique surface topology and low energy replication process that directly affect cellular biological behaviors at the interface,the fabrication of micro-nano pattern biomaterials and the regulation of surface physical and chemical properties are of great significance in the fields of cell regulation,tissue engineering,and regenerative medicine.Herein,we provide a comprehensive review of the progress in the fabrication and application of patterned materials based on the coupling of mechanical action at the micro-and nano-meter scale,including photolithography,micro-contact printing,electron beam lithography,electrospinning,and 3D printing technology.Furthermore,a summary of the fabrication process,underlying principles,as well as the advantages and disadvantages of various technologies are reviewed.We also discuss the influence of material properties on the fabrication of micro-and nano-patterns.展开更多
Performance of a hybrid reactor comprising of trickling filter (TF) and aeration tank (AT) unit was studied for biological treatment of wastewater containing mixture of phenol and m-cresol, using mixed microbial c...Performance of a hybrid reactor comprising of trickling filter (TF) and aeration tank (AT) unit was studied for biological treatment of wastewater containing mixture of phenol and m-cresol, using mixed microbial culture. The reactor was operated with hydraulic loading rates (HLR) and phenolics loading rates (PLR) between 0.222-1.078 m3/(m2-day) and 0.900-3.456 kg/(m3.day), respectively. The efficiency of substrate removal varied between 71%-100% for the range of HLR and PLR studied. The fixed film unit showed better substrate removal efficiency than the aeration tank and was more resistant to substrate inhibition. The kinetic parameters related to both units of the reactor were evaluated and their variation with HLR and PLR were monitored. It revealed the presence of substrate inhibition at high PLR both in TF and AT unit. The biofilm model established the substrate concentration profile within the film by solving differential equation of substrate mass transfer using boundary problem solver tool 'bvp4c' of MATLAB 7. 1 software. Response surface methodology was used to design and optimize the biodegradation process using Design Expert 8 software, where phenol and m-cresol concentrations, residence time were chosen as input variables and percentage of removal was the response. The design of experiment showed that a quadratic model could be fitted best for the present experimental study. Significant interaction of the residence time with the substrate concentrations was observed. The optimized condition for operating the reactor as predicted by the model was 230 mg/L of phenol, 190 mg/L of m-cresol with residence time of 24.82 hr to achieve 99.92% substrate removal.展开更多
基金financially supported by the program of National Natural Science Foundation of China (Grant No. 51375475)the Instrument Developing Project of the Chinese Academy of Sciences (Grant No. YZ201326)
文摘TiN coatings were deposited using a hybrid home-made high power impulse magnetron sputtering(HIPIMS)technique at room temperature.The effects of substrate negative bias voltage on the deposition rate,composition,crystal structure,surface morphology,microstructure and mechanical properties were investigated.The results revealed that with the increase in bias voltage from-50 to-400 V,TiN coatings exhibited a trend of densification and the crystal structure gradually evolved from(111) orientation to(200)orientation.The growth rate decreased from about 12.2 nm to 7.8 nm per minute with the coating densification.When the bias voltage was-300 V,the minimum surface roughness value of 10.1 nm was obtained,and the hardness and Young’s modulus of TiN coatings reached the maximum value of 17.4 GPa and 263.8 GPa,respectively.Meanwhile,the highest adhesion of 59 N was obtained between coating and substrate.
文摘本文设计了一种基于磁/电介质混合型基体的宽带超材料吸波体,吸波体基本单元由电阻膜、磁/电介质混合型基体以及金属背板组成.采用时域有限差分法对超材料吸波体吸波性能进行了仿真,使用遗传算法优化了反射率小于-10 d B的带宽.仿真结果表明,当超材料吸波体厚度为2.5 mm时,在7.8—18 GHz频率范围内的反射率小于-10 d B,具有厚度薄、宽带、极化不敏感等优点.通过等效电路模型对其工作机理进行了分析与讨论.最后制备样品进行测试,测试结果与仿真结果一致.
基金National Natural Science Foundation of China,Grant/Award Number:31770608Postgraduate Research&Practice Innovation Program of Jiangsu Province,Grant/Award Number:KYCX22_1081Jiangsu Specially‐appointed Professorship Program,Grant/Award Number:Sujiaoshi[2016]20。
文摘The emergence of Li–Mg hybrid batteries has been receiving attention,owing to their enhanced electrochemical kinetics and reduced overpotential.Nevertheless,the persistent challenge of uneven Mg electrodeposition remains a significant impediment to their practical integration.Herein,we developed an ingenious approach that centered around epitaxial electrocrystallization and meticulously controlled growth of magnesium crystals on a specialized MgMOF substrate.The chosen MgMOF substrate demonstrated a robust affinity for magnesium and showed minimal lattice misfit with Mg,establishing the crucial prerequisites for successful heteroepitaxial electrocrystallization.Moreover,the incorporation of periodic electric fields and successive nanochannels within the MgMOF structure created a spatially confined environment that considerably promoted uniform magnesium nucleation at the molecular scale.Taking inspiration from the“blockchain”concept prevalent in the realm of big data,we seamlessly integrated a conductive polypyrrole framework,acting as a connecting“chain,”to interlink the“blocks”comprising the MgMOF cavities.This innovative design significantly amplified charge‐transfer efficiency,thereby increasing overall electrochemical kinetics.The resulting architecture(MgMOF@PPy@CC)served as an exceptional host for heteroepitaxial Mg electrodeposition,showcasing remarkable electrostripping/plating kinetics and excellent cycling performance.Surprisingly,a symmetrical cell incorporating the MgMOF@PPy@CC electrode demonstrated impressive stability even under ultrahigh current density conditions(10mAcm–2),maintaining operation for an extended 1200 h,surpassing previously reported benchmarks.Significantly,on coupling the MgMOF@PPy@CC anode with a Mo_(6)S_(8) cathode,the assembled battery showed an extended lifespan of 10,000 cycles at 70 C,with an outstanding capacity retention of 96.23%.This study provides a fresh perspective on the rational design of epitaxial electrocrystallization driven by metal–organic
基金supported by Key Research Program of Frontier Sciences of CAS(No.QYKJZD-SSW-SLH02).
文摘With the advent of tissue engineering and biomedicine,the creation of extracellular matrix(ECM)biomaterials for in vitro applications has become a prominent and promising strategy.These ECM materials provide physical,biochemical,and mechanical properties that guide cellular behaviors,such as proliferation,differentiation,migration,and apoptosis.Because micro-and nano-patterned materials have a unique surface topology and low energy replication process that directly affect cellular biological behaviors at the interface,the fabrication of micro-nano pattern biomaterials and the regulation of surface physical and chemical properties are of great significance in the fields of cell regulation,tissue engineering,and regenerative medicine.Herein,we provide a comprehensive review of the progress in the fabrication and application of patterned materials based on the coupling of mechanical action at the micro-and nano-meter scale,including photolithography,micro-contact printing,electron beam lithography,electrospinning,and 3D printing technology.Furthermore,a summary of the fabrication process,underlying principles,as well as the advantages and disadvantages of various technologies are reviewed.We also discuss the influence of material properties on the fabrication of micro-and nano-patterns.
文摘Performance of a hybrid reactor comprising of trickling filter (TF) and aeration tank (AT) unit was studied for biological treatment of wastewater containing mixture of phenol and m-cresol, using mixed microbial culture. The reactor was operated with hydraulic loading rates (HLR) and phenolics loading rates (PLR) between 0.222-1.078 m3/(m2-day) and 0.900-3.456 kg/(m3.day), respectively. The efficiency of substrate removal varied between 71%-100% for the range of HLR and PLR studied. The fixed film unit showed better substrate removal efficiency than the aeration tank and was more resistant to substrate inhibition. The kinetic parameters related to both units of the reactor were evaluated and their variation with HLR and PLR were monitored. It revealed the presence of substrate inhibition at high PLR both in TF and AT unit. The biofilm model established the substrate concentration profile within the film by solving differential equation of substrate mass transfer using boundary problem solver tool 'bvp4c' of MATLAB 7. 1 software. Response surface methodology was used to design and optimize the biodegradation process using Design Expert 8 software, where phenol and m-cresol concentrations, residence time were chosen as input variables and percentage of removal was the response. The design of experiment showed that a quadratic model could be fitted best for the present experimental study. Significant interaction of the residence time with the substrate concentrations was observed. The optimized condition for operating the reactor as predicted by the model was 230 mg/L of phenol, 190 mg/L of m-cresol with residence time of 24.82 hr to achieve 99.92% substrate removal.