This review focuses on the recent research progress in the multi-component assembly of luminescent rare earth hybrid materials, which is based on the luminescent rare earth compounds and two or more other building uni...This review focuses on the recent research progress in the multi-component assembly of luminescent rare earth hybrid materials, which is based on the luminescent rare earth compounds and two or more other building units, including the other photoactive species. It covers the multi-component luminescent rare earth hybrids which was assembled with different(a) organic-inorganic polymeric units,(b)nanoporous units,(c) nanoparticle composites or(d) other developing special units. Finally, future challenges and opportunities in this field are discussed. Herein it mainly focuses on the work of Yan's group in recent years.展开更多
Interest in lanthanide complexes in the synthetic clays remains growing considerably during the last decades because of the attractive features of the individuals. Synthetic clays like Laponite~? and Aminoclay show gr...Interest in lanthanide complexes in the synthetic clays remains growing considerably during the last decades because of the attractive features of the individuals. Synthetic clays like Laponite~? and Aminoclay show great potentials in building up the luminescent hybrid materials due to their obvious advantages such as high purity, high dispersibility(or solubility) in water to yield translucent gels and clear aqueous solution. Additionally, their strong adsorption capacity for non-polar molecules or complexes is favorable to the formation of water-soluble and aqueous processable luminescent materials. This feature article summarizes the latest developments in the design and preparation of highly luminescent organicinorganic hybrid materials with excellent aqueous process ability based on lanthanide complexes intercalated synthetic clays.展开更多
基金Project supported by the National Natural Science Foundation of China(21571142)the Developing Science Fund of Tongji University,the Natural Science Foundation of Zhejiang Province(LQ14B010001)the Natural Science Foundation of Ningbo,China(2016A610105)
文摘This review focuses on the recent research progress in the multi-component assembly of luminescent rare earth hybrid materials, which is based on the luminescent rare earth compounds and two or more other building units, including the other photoactive species. It covers the multi-component luminescent rare earth hybrids which was assembled with different(a) organic-inorganic polymeric units,(b)nanoporous units,(c) nanoparticle composites or(d) other developing special units. Finally, future challenges and opportunities in this field are discussed. Herein it mainly focuses on the work of Yan's group in recent years.
基金Project support by the National Natural Science Foundation of China(21171046,21502039,21271060)the Natural Science Foundation of Hebei Province(No.B2016202147,B2016202149,B2017202048)+2 种基金Educational Committee of Hebei Province(LJRC021,QN2015172)Hebei Provincial College of Science and Technology Research Project(BJ2018054)Tianjin Natural Science Foundation(18JCYBJC17200)
文摘Interest in lanthanide complexes in the synthetic clays remains growing considerably during the last decades because of the attractive features of the individuals. Synthetic clays like Laponite~? and Aminoclay show great potentials in building up the luminescent hybrid materials due to their obvious advantages such as high purity, high dispersibility(or solubility) in water to yield translucent gels and clear aqueous solution. Additionally, their strong adsorption capacity for non-polar molecules or complexes is favorable to the formation of water-soluble and aqueous processable luminescent materials. This feature article summarizes the latest developments in the design and preparation of highly luminescent organicinorganic hybrid materials with excellent aqueous process ability based on lanthanide complexes intercalated synthetic clays.