This paper investigates a class of coupled neural networks with delays and ad-dresses the exponential synchronization problem using delay-compensatory impulsive control. Razumikhin-type inequalities involving some des...This paper investigates a class of coupled neural networks with delays and ad-dresses the exponential synchronization problem using delay-compensatory impulsive control. Razumikhin-type inequalities involving some destabilizing delayed impulse gains are proposed, along with a new delay-compensatory concept demonstrating two crucial roles in system stability. Based on the constructed inequalities and the introduced delay-compensatory concept, sufficient stability and synchronization criteria for globally exponential synchronization of coupled neural networks are provided. To address the exponential synchronization problem in coupled neural networks. Utilizing delay-compensatory impulsive control and Razumikhin-type inequalities. The Lyapunov function for coupled neural networks with delays and integral terms exhibits exponential estimates.展开更多
文摘This paper investigates a class of coupled neural networks with delays and ad-dresses the exponential synchronization problem using delay-compensatory impulsive control. Razumikhin-type inequalities involving some destabilizing delayed impulse gains are proposed, along with a new delay-compensatory concept demonstrating two crucial roles in system stability. Based on the constructed inequalities and the introduced delay-compensatory concept, sufficient stability and synchronization criteria for globally exponential synchronization of coupled neural networks are provided. To address the exponential synchronization problem in coupled neural networks. Utilizing delay-compensatory impulsive control and Razumikhin-type inequalities. The Lyapunov function for coupled neural networks with delays and integral terms exhibits exponential estimates.