针对目前国内外应用于移动机器人的三维激光扫描系统存在的扫描效率问题,提出了一种仿人眼功能的三维激光扫描算法.从仿生学角度出发,该算法模仿人类眼睛的扫描功能,对陌生环境进行分步扫描:根据当前的扫描信息,在线规划出下一步的扫描...针对目前国内外应用于移动机器人的三维激光扫描系统存在的扫描效率问题,提出了一种仿人眼功能的三维激光扫描算法.从仿生学角度出发,该算法模仿人类眼睛的扫描功能,对陌生环境进行分步扫描:根据当前的扫描信息,在线规划出下一步的扫描规律,以减少无用信息的获取;采用分步插补定位的方法来弥补分步扫描带来的时间消耗,从而提高了扫描系统的效率.为了满足扫描算法的在线处理对实时性的要求,采用了一种DSP(Digital Signal Processing)+FPGA(Field-Programmable Gate Array)的硬件平台架构:即DSP作主控制器负责三维信息的获取,FPGA作协处理器负责扫描算法的实现.实验结果表明仿人眼功能的扫描算法可以有效的提高三维扫描系统的扫描效率.展开更多
This paper proposed a novel humanoid robot eye, which is driven by six Pneumatic Artificial Muscles (PAMs) and rotates with 3 Degree of Freedom (DOF). The design of the mechanism and motion type of the robot eye a...This paper proposed a novel humanoid robot eye, which is driven by six Pneumatic Artificial Muscles (PAMs) and rotates with 3 Degree of Freedom (DOF). The design of the mechanism and motion type of the robot eye are inspired by that of human eyes. The model of humanoid robot eye is established as a parallel mechanism, and the inverse-kinematic problem of this flexible tendons driving parallel system is solved by the analytical geometry method. As an extension, the simulation result for saccadic movement is presented under three conditions. The design and kinematic analysis of the prototype could be a sig- nificant step towards the goal of building an autonomous humanoid robot eye with the movement and especially the visual functions similar to that of human.展开更多
文摘针对目前国内外应用于移动机器人的三维激光扫描系统存在的扫描效率问题,提出了一种仿人眼功能的三维激光扫描算法.从仿生学角度出发,该算法模仿人类眼睛的扫描功能,对陌生环境进行分步扫描:根据当前的扫描信息,在线规划出下一步的扫描规律,以减少无用信息的获取;采用分步插补定位的方法来弥补分步扫描带来的时间消耗,从而提高了扫描系统的效率.为了满足扫描算法的在线处理对实时性的要求,采用了一种DSP(Digital Signal Processing)+FPGA(Field-Programmable Gate Array)的硬件平台架构:即DSP作主控制器负责三维信息的获取,FPGA作协处理器负责扫描算法的实现.实验结果表明仿人眼功能的扫描算法可以有效的提高三维扫描系统的扫描效率.
基金the National Natural Science Foundation of China (Project no. 50875240)the Program for New Century Excellent Talents in University, Ministry of Education, P. R. China (Grant no.NCET-04-0545)
文摘This paper proposed a novel humanoid robot eye, which is driven by six Pneumatic Artificial Muscles (PAMs) and rotates with 3 Degree of Freedom (DOF). The design of the mechanism and motion type of the robot eye are inspired by that of human eyes. The model of humanoid robot eye is established as a parallel mechanism, and the inverse-kinematic problem of this flexible tendons driving parallel system is solved by the analytical geometry method. As an extension, the simulation result for saccadic movement is presented under three conditions. The design and kinematic analysis of the prototype could be a sig- nificant step towards the goal of building an autonomous humanoid robot eye with the movement and especially the visual functions similar to that of human.