Boron-doped diamond(BDD)films were deposited on the tungsten carbide substrates at different substrate temperatures ranging from 450 to 850°C by hot filament chemical vapor deposition(HFCVD)method.The effect of d...Boron-doped diamond(BDD)films were deposited on the tungsten carbide substrates at different substrate temperatures ranging from 450 to 850°C by hot filament chemical vapor deposition(HFCVD)method.The effect of deposition temperature on the properties of the boron-doped diamond films on tungsten carbide substrate was investigated.It is found that boron doping obviously enhances the growth rate of diamond films.A relatively high growth rate of 544 nm/h was obtained for the BDD film deposited on the tungsten carbide at 650°C.The added boron-containing precursor gas apparently reduced activation energy of film growth to be 53.1 kJ/mol,thus accelerated the rate of deposition chemical reaction.Moreover,Raman and XRD analysis showed that heavy boron doping(750 and 850°C)deteriorated the diamond crystallinity and produced a high defect density in the BDD films.Overall,600-700°C is found to be an optimum substrate temperature range for depositing BDD films on tungsten carbide substrate.展开更多
The micro-crystalline diamond (MCD) and fine-grained diamond (FGD) films are deposited on commercial silicon nitride inserts by the hot-filament chemical vapor deposition (HFCVD) method. The friction andcutting proper...The micro-crystalline diamond (MCD) and fine-grained diamond (FGD) films are deposited on commercial silicon nitride inserts by the hot-filament chemical vapor deposition (HFCVD) method. The friction andcutting properties of as-deposited MCD and FGD films coated silicon nitride (Si3N4) inserts are comparatively investigated in this study. The scanning electron microscopy (SEM) and Raman spectroscopy are adopted to studythe characterization of the deposited diamond films. The friction tests are conducted on a ball-on-plate typereciprocating friction tester in ambient air using Co-cemented tungsten carbide (WC-Co), Si3N4 and ball-bearing steel (BBS) balls as the mating materials of the diamond films. For sliding against WC-Co, Si3N4 and BBS,the FGD film presents lower friction coeffcients than the MCD film. However, after sliding against Si3N4, the FGD film is subject to more severe wear than the MCD film. The cutting performance of as-deposited MCD and FGD coated Si3N4 inserts is examined in dry turning glass fiber reinforced plastics (GFRP) composite materials,comparing with the uncoated Si3N4 insert. The results indicate that the lifetime of Si3N4 inserts can be prolonged by depositing the MCD or FGD film on them and the FGD coated insert shows longer cutting lifetime than the MCD coated one.展开更多
The characteristics of hot filament chemical vapor deposition(HFCVD) diamond films are significantly influenced by the deposition parameters, such as the substrate temperature, total pressure and carbon concentratio...The characteristics of hot filament chemical vapor deposition(HFCVD) diamond films are significantly influenced by the deposition parameters, such as the substrate temperature, total pressure and carbon concentration. Orthogonal experiments were introduced to study the comprehensive effects of such three parameters on diamond films deposited on WC-Co substrates. Field emission scanning electron microscopy, atomic force microscopy and Raman spectrum were employed to analyze the morphology, growth rate and composition of as-deposited diamond films. The morphology varies from pyramidal to cluster features with temperature decreasing. It is found that the low total pressure is suitable for nano-crystalline diamond films growth. Moreover, the substrate temperature and total pressure have combined influence on the growth rate of the diamond films.展开更多
A sheet plasma is generated by a mesh anode and a single hot-filament cathode with a DC power supply, and its characteristics are experimentally investigated. The sheet plasma is observed to locate around the anode. B...A sheet plasma is generated by a mesh anode and a single hot-filament cathode with a DC power supply, and its characteristics are experimentally investigated. The sheet plasma is observed to locate around the anode. Both electron density and electron temperature derived from the average energy of the energetic electrons in nitrogen are estimated to be 10s cm^-3 and 20- 40 eV, respectively, using the optical emission spectroscopy (OES) method based on a kinetic model of low-pressure nitrogen discharge. The electron density, electron temperature and their spatial distributions are found to be affected by the supplying voltage on the anode(70 V to 300 V), filament temperature (600℃ to 780℃) and gas pressure (2 Pa to 20 Pa). By adjusting these parameters the discharge status can be easily controlled.展开更多
Deposition parameters that have great influences on hot filament chemical vapor deposition (HFCVD) diamond films growth on inner hole surfaces of WC?Co substrates mainly include the substrate temperature (t), carbon c...Deposition parameters that have great influences on hot filament chemical vapor deposition (HFCVD) diamond films growth on inner hole surfaces of WC?Co substrates mainly include the substrate temperature (t), carbon content (φ), total pressure (p) and total mass flow (F). Taguchi method was used for the experimental design in order to study the combined effects of the four parameters on the properties of as-deposited diamond films. A new figure-of-merit (FOM) was defined to assess their comprehensive performance. It is clarified thatt,φandp all have significant and complicated effects on the performance of the diamond film and the FOM, which also present some differences as compared with the previous studies on CVD diamond films growth on plane or external surfaces. Aiming to deposit HFCVD diamond films with the best comprehensive performance, the key deposition parameters were finally optimized as:t=830 °C,φ=4.5%,p=4000 Pa,F=800 mL/min.展开更多
The research of diamond film growth with a process of hot filament chemical vapourdeposition(HF·CVD)has been carried out for several years,and one of the main technicalproblems hindering the development of this
Deposition of diamond thin films on tungsten wire substrate with the gas mixture of acetone and hydrogen by using bias-enhanced hot filament chemical vapor deposition(CVD)with the tantalum wires being optimized arra...Deposition of diamond thin films on tungsten wire substrate with the gas mixture of acetone and hydrogen by using bias-enhanced hot filament chemical vapor deposition(CVD)with the tantalum wires being optimized arranged is investigated.The self-supported diamond tubes are obtained by etching away the tungsten substrates.The quality of the diamond film before and after the removal of substrates is observed by scanning electron microscope(SEM)and Raman spectrum.The results show that the cylindrical diamond tubes with good quality and uniform thickness are obtained on tungsten wires by using bias enhanced hot filament CVD.The compressive stress in diamond film formed during the deposition is released after the substrate etches away by mixture of H2O2 and NH4 OH.There is no residual stress in diamond tube after substrate removal.展开更多
With use of electron-assisted chemical vapour deposition (EACVD) technology, nanocrystalline diamond films are successfully deposited on an α-SiC single phase ceramics substrate by means of reduction of the reactiv...With use of electron-assisted chemical vapour deposition (EACVD) technology, nanocrystalline diamond films are successfully deposited on an α-SiC single phase ceramics substrate by means of reduction of the reactive gas pressure. The structure and surface morphology of the deposited films are characterized by Raman spectroscopy, x-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). The results examined by FE-SEM and AFM show that when the gas pressure was reduced to 0.5- 1 kPa, the surface grain size and surface roughness of the diamond film are decreased greatly to 18-32nm and 34-58nm respectively. The grain sizes estimated from full with at half maximum of (111) XRD peak by the Scherrer formula are 6-28 nm. However, too high secondary nucleation rate may result in pores and defects in the deposited films. Only at suitable gas pressure (1 kPa) to deposit films can we obtain densification and better quality nanocrystalline films.展开更多
By means of electron assisted hot filament chemical vapour deposition technology, nanocrystalline diamond films are deposited on polished n-(100)Si wafer surface at I kPa gas pressure. The deposited films are charac...By means of electron assisted hot filament chemical vapour deposition technology, nanocrystalline diamond films are deposited on polished n-(100)Si wafer surface at I kPa gas pressure. The deposited films are characterized with a Raman spectrometer, atomic force microscope, semiconductor characterization system and Hall effect measurement system. The results show that, when bias current is larger than 2 A, sheet hole concentration can increase to a value greater than 1013 cm-2 and undoped nanocrystalline diamond films with a p-type semiconducting characteristic form. Heterojunction between n-Si substrate and the nanocrystalline diamond films deposited with 2 A and 6 A bias current has an evident junction effect. Hole formation mechanisms in the films are discussed.展开更多
In this paper we focus on diamond film hot-filament chemical vapor deposition reactors where the only reactant is hydrogen so as to study the formation and transport of hydrogen atoms. Analysis of dimensionless number...In this paper we focus on diamond film hot-filament chemical vapor deposition reactors where the only reactant is hydrogen so as to study the formation and transport of hydrogen atoms. Analysis of dimensionless numbers for heat and mass transfer reveals that thermal conduction and diffusion are the dominant mechanisms for gas-phase heat and mass transfer, respectively. A simplified model has been established to simulate gas-phase temperature and H concentration distributions between the filament and the substrate. Examination of the relative importance of homogeneous and heterogeneous production of H atoms indicates that filament-surface decomposition of molecular hydrogen is the dominant source of H and gas-phase reaction plays a negligible role. The filament-surface dissociation rates of H2 for various filament temperatures were calculated to match H-atom concentrations observed in the literature or derived from power consumption by filaments. Arrhenius plots of the filament-surface hydrogen dissociation rates suggest that dissociation of H2 at refractory filament surface is a catalytic process, which has a rather lower effective activation energy than homogeneous thermal dissociation. Atomic hydrogen, acting as an important heat transfer medium to heat the substrate, can freely diffuse from the filament to the substrate without recombination.展开更多
The effects of Si doping on morphology, components and structure characteristics of CVD diamond films were studied. Si-doped CVD diamond films were deposited on Si substrate by adding tetraethoxysilane (TEOS) into a...The effects of Si doping on morphology, components and structure characteristics of CVD diamond films were studied. Si-doped CVD diamond films were deposited on Si substrate by adding tetraethoxysilane (TEOS) into acetone as source of reactant gas. The morphology and microstructure of diamond films were characterized by scanning electron microcopy (SEM). The crystalline quality of diamond films was studied by Raman spectroscopy and X-ray diffractometry (XRD). The surface roughness of the films was evaluated with surface profilometer. The results suggest that Si doping tends to reduce the crystallite size, enhance grain refinement and inhibit the appearance of (11 I) facets. Raman spectra indicate that Si doping can enhance the formation of sp2 phase in diamond films. Moreover, Raman signal of SiC was detected, which suggests the existence of Si in the diamond films. Smooth fine-grained diamond (SFGD) film was synthesized at Si to C ratio of 1%.展开更多
In a steady-state plasma,the loss rate of plasma particles to the chamber wall and surfaces in contact with plasma is balanced by the ionization rate of background neutrals in the hot-filament discharges.The balance b...In a steady-state plasma,the loss rate of plasma particles to the chamber wall and surfaces in contact with plasma is balanced by the ionization rate of background neutrals in the hot-filament discharges.The balance between the loss rate and ionization rate of plasma particles(electrons and ions)maintains quasi-neutrality of the bulk plasma.In the presence of an external perturbation,it tries to retain its quasi-neutrality condition.In this work,we studied how the properties of bulk plasma are affected by an external DC potential perturbation.An auxiliary biased metal disk electrode was used to introduce a potential perturbation to the plasma medium.A single Langmuir probe and an emissive probe,placed in the line of the discharge axis,were used for the characterization of the bulk plasma.It is observed that only positive bias to the auxiliary metal disk increases the plasma potential,electron temperature,and plasma density but these plasma parameters remain unaltered when the disk is biased with a negative potential with respect to plasma potential.The observed plasma parameters for two different-sized,positively as well as negatively biased,metal disks are compared and found inconsistent with the existing theoretical model at large positive bias voltages.The role of the primary energetic electrons population in determining the plasma parameters is discussed.The experimentally observed results are qualitatively explained on the basis of electrostatic confinement arising due to the loss of electrons to a biased metal disk electrode.展开更多
基金Project(51375011)supported by the National Natural Science Foundation of ChinaProject(15cxy49)supported by the Shanghai Municipal Education Commission,ChinaProject(16PJ025)supported by the Shanghai Pujiang Program,China
文摘Boron-doped diamond(BDD)films were deposited on the tungsten carbide substrates at different substrate temperatures ranging from 450 to 850°C by hot filament chemical vapor deposition(HFCVD)method.The effect of deposition temperature on the properties of the boron-doped diamond films on tungsten carbide substrate was investigated.It is found that boron doping obviously enhances the growth rate of diamond films.A relatively high growth rate of 544 nm/h was obtained for the BDD film deposited on the tungsten carbide at 650°C.The added boron-containing precursor gas apparently reduced activation energy of film growth to be 53.1 kJ/mol,thus accelerated the rate of deposition chemical reaction.Moreover,Raman and XRD analysis showed that heavy boron doping(750 and 850°C)deteriorated the diamond crystallinity and produced a high defect density in the BDD films.Overall,600-700°C is found to be an optimum substrate temperature range for depositing BDD films on tungsten carbide substrate.
基金the National Natural Science Foundation of China (No. 50975177)the Shanghai Scienceand Technology Plan of Action for Technical Standardsfor Innovation and Special (No. 08DZ0501700)
文摘The micro-crystalline diamond (MCD) and fine-grained diamond (FGD) films are deposited on commercial silicon nitride inserts by the hot-filament chemical vapor deposition (HFCVD) method. The friction andcutting properties of as-deposited MCD and FGD films coated silicon nitride (Si3N4) inserts are comparatively investigated in this study. The scanning electron microscopy (SEM) and Raman spectroscopy are adopted to studythe characterization of the deposited diamond films. The friction tests are conducted on a ball-on-plate typereciprocating friction tester in ambient air using Co-cemented tungsten carbide (WC-Co), Si3N4 and ball-bearing steel (BBS) balls as the mating materials of the diamond films. For sliding against WC-Co, Si3N4 and BBS,the FGD film presents lower friction coeffcients than the MCD film. However, after sliding against Si3N4, the FGD film is subject to more severe wear than the MCD film. The cutting performance of as-deposited MCD and FGD coated Si3N4 inserts is examined in dry turning glass fiber reinforced plastics (GFRP) composite materials,comparing with the uncoated Si3N4 insert. The results indicate that the lifetime of Si3N4 inserts can be prolonged by depositing the MCD or FGD film on them and the FGD coated insert shows longer cutting lifetime than the MCD coated one.
基金Project(2012ZX04003-031)supported by the National Science and Technology Major Project,China
文摘The characteristics of hot filament chemical vapor deposition(HFCVD) diamond films are significantly influenced by the deposition parameters, such as the substrate temperature, total pressure and carbon concentration. Orthogonal experiments were introduced to study the comprehensive effects of such three parameters on diamond films deposited on WC-Co substrates. Field emission scanning electron microscopy, atomic force microscopy and Raman spectrum were employed to analyze the morphology, growth rate and composition of as-deposited diamond films. The morphology varies from pyramidal to cluster features with temperature decreasing. It is found that the low total pressure is suitable for nano-crystalline diamond films growth. Moreover, the substrate temperature and total pressure have combined influence on the growth rate of the diamond films.
基金supported by National Defence Research Foundation of China (No.A1420060181)
文摘A sheet plasma is generated by a mesh anode and a single hot-filament cathode with a DC power supply, and its characteristics are experimentally investigated. The sheet plasma is observed to locate around the anode. Both electron density and electron temperature derived from the average energy of the energetic electrons in nitrogen are estimated to be 10s cm^-3 and 20- 40 eV, respectively, using the optical emission spectroscopy (OES) method based on a kinetic model of low-pressure nitrogen discharge. The electron density, electron temperature and their spatial distributions are found to be affected by the supplying voltage on the anode(70 V to 300 V), filament temperature (600℃ to 780℃) and gas pressure (2 Pa to 20 Pa). By adjusting these parameters the discharge status can be easily controlled.
基金Projects(51275302,51005154)supported by the National Natural Science Foundation of China
文摘Deposition parameters that have great influences on hot filament chemical vapor deposition (HFCVD) diamond films growth on inner hole surfaces of WC?Co substrates mainly include the substrate temperature (t), carbon content (φ), total pressure (p) and total mass flow (F). Taguchi method was used for the experimental design in order to study the combined effects of the four parameters on the properties of as-deposited diamond films. A new figure-of-merit (FOM) was defined to assess their comprehensive performance. It is clarified thatt,φandp all have significant and complicated effects on the performance of the diamond film and the FOM, which also present some differences as compared with the previous studies on CVD diamond films growth on plane or external surfaces. Aiming to deposit HFCVD diamond films with the best comprehensive performance, the key deposition parameters were finally optimized as:t=830 °C,φ=4.5%,p=4000 Pa,F=800 mL/min.
文摘The research of diamond film growth with a process of hot filament chemical vapourdeposition(HF·CVD)has been carried out for several years,and one of the main technicalproblems hindering the development of this
基金Selected from Proceedings of the 7th International Conference on Frontiers of Design and Manufacturing(ICFDM'2006)This project is supported by National Natural Science Foundation of China(No.50475026,No.50275095,No.50575135).
文摘Deposition of diamond thin films on tungsten wire substrate with the gas mixture of acetone and hydrogen by using bias-enhanced hot filament chemical vapor deposition(CVD)with the tantalum wires being optimized arranged is investigated.The self-supported diamond tubes are obtained by etching away the tungsten substrates.The quality of the diamond film before and after the removal of substrates is observed by scanning electron microscope(SEM)and Raman spectrum.The results show that the cylindrical diamond tubes with good quality and uniform thickness are obtained on tungsten wires by using bias enhanced hot filament CVD.The compressive stress in diamond film formed during the deposition is released after the substrate etches away by mixture of H2O2 and NH4 OH.There is no residual stress in diamond tube after substrate removal.
基金Supported by the National Natural Science Foundation of China under Grant No 60277024, the Nano-technology projects of Shanghai under Grant No 0452 nm051, the Shanghai Foundation of Applied Materials Research and Development under Grant No 0404, and the KeySubject Construction Project (Material Science) of Shanghai Educational Committee.
文摘With use of electron-assisted chemical vapour deposition (EACVD) technology, nanocrystalline diamond films are successfully deposited on an α-SiC single phase ceramics substrate by means of reduction of the reactive gas pressure. The structure and surface morphology of the deposited films are characterized by Raman spectroscopy, x-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). The results examined by FE-SEM and AFM show that when the gas pressure was reduced to 0.5- 1 kPa, the surface grain size and surface roughness of the diamond film are decreased greatly to 18-32nm and 34-58nm respectively. The grain sizes estimated from full with at half maximum of (111) XRD peak by the Scherrer formula are 6-28 nm. However, too high secondary nucleation rate may result in pores and defects in the deposited films. Only at suitable gas pressure (1 kPa) to deposit films can we obtain densification and better quality nanocrystalline films.
基金Supported by the National Natural Science Foundation of China under Grant No 60577040, the Shanghai Foundation of Applied Materials Research and Development (0404), the Nano-technology Project of Shanghai (0452nm051, 05nm05046), and the Shanghai Leading Academic Disciplines (T0101).
文摘By means of electron assisted hot filament chemical vapour deposition technology, nanocrystalline diamond films are deposited on polished n-(100)Si wafer surface at I kPa gas pressure. The deposited films are characterized with a Raman spectrometer, atomic force microscope, semiconductor characterization system and Hall effect measurement system. The results show that, when bias current is larger than 2 A, sheet hole concentration can increase to a value greater than 1013 cm-2 and undoped nanocrystalline diamond films with a p-type semiconducting characteristic form. Heterojunction between n-Si substrate and the nanocrystalline diamond films deposited with 2 A and 6 A bias current has an evident junction effect. Hole formation mechanisms in the films are discussed.
文摘In this paper we focus on diamond film hot-filament chemical vapor deposition reactors where the only reactant is hydrogen so as to study the formation and transport of hydrogen atoms. Analysis of dimensionless numbers for heat and mass transfer reveals that thermal conduction and diffusion are the dominant mechanisms for gas-phase heat and mass transfer, respectively. A simplified model has been established to simulate gas-phase temperature and H concentration distributions between the filament and the substrate. Examination of the relative importance of homogeneous and heterogeneous production of H atoms indicates that filament-surface decomposition of molecular hydrogen is the dominant source of H and gas-phase reaction plays a negligible role. The filament-surface dissociation rates of H2 for various filament temperatures were calculated to match H-atom concentrations observed in the literature or derived from power consumption by filaments. Arrhenius plots of the filament-surface hydrogen dissociation rates suggest that dissociation of H2 at refractory filament surface is a catalytic process, which has a rather lower effective activation energy than homogeneous thermal dissociation. Atomic hydrogen, acting as an important heat transfer medium to heat the substrate, can freely diffuse from the filament to the substrate without recombination.
基金Project(51275302)supported by the National Natural Science Foundation of ChinaProject(BC2012124)supported by Technical Innovation Funds for the Sci-Tech Enterprise of Jiangsu Province,China
文摘The effects of Si doping on morphology, components and structure characteristics of CVD diamond films were studied. Si-doped CVD diamond films were deposited on Si substrate by adding tetraethoxysilane (TEOS) into acetone as source of reactant gas. The morphology and microstructure of diamond films were characterized by scanning electron microcopy (SEM). The crystalline quality of diamond films was studied by Raman spectroscopy and X-ray diffractometry (XRD). The surface roughness of the films was evaluated with surface profilometer. The results suggest that Si doping tends to reduce the crystallite size, enhance grain refinement and inhibit the appearance of (11 I) facets. Raman spectra indicate that Si doping can enhance the formation of sp2 phase in diamond films. Moreover, Raman signal of SiC was detected, which suggests the existence of Si in the diamond films. Smooth fine-grained diamond (SFGD) film was synthesized at Si to C ratio of 1%.
文摘In a steady-state plasma,the loss rate of plasma particles to the chamber wall and surfaces in contact with plasma is balanced by the ionization rate of background neutrals in the hot-filament discharges.The balance between the loss rate and ionization rate of plasma particles(electrons and ions)maintains quasi-neutrality of the bulk plasma.In the presence of an external perturbation,it tries to retain its quasi-neutrality condition.In this work,we studied how the properties of bulk plasma are affected by an external DC potential perturbation.An auxiliary biased metal disk electrode was used to introduce a potential perturbation to the plasma medium.A single Langmuir probe and an emissive probe,placed in the line of the discharge axis,were used for the characterization of the bulk plasma.It is observed that only positive bias to the auxiliary metal disk increases the plasma potential,electron temperature,and plasma density but these plasma parameters remain unaltered when the disk is biased with a negative potential with respect to plasma potential.The observed plasma parameters for two different-sized,positively as well as negatively biased,metal disks are compared and found inconsistent with the existing theoretical model at large positive bias voltages.The role of the primary energetic electrons population in determining the plasma parameters is discussed.The experimentally observed results are qualitatively explained on the basis of electrostatic confinement arising due to the loss of electrons to a biased metal disk electrode.