The true stress-strain curves of as-cast 7075 aluminum alloy have been obtained by isothermal compression tests at temperatures of 300 500 ~C and strain rates of 0.01 10 s i. The plastic flow instability map is establ...The true stress-strain curves of as-cast 7075 aluminum alloy have been obtained by isothermal compression tests at temperatures of 300 500 ~C and strain rates of 0.01 10 s i. The plastic flow instability map is established based on Gegel B and Murthy instability criteria because the deformed compression samples suggest that the combination of the above two instability criteria has more comprehensive crack prediction ability. And the processing map based on Dynamic Mate- rial Model (DMM) of as-cast 7075 aluminum alloy has been developed through a superposition of the established instability map and power dissipation map. In terms of microstructure of the deformed samples and whether plastic flow is stable or not, the processing map can be divided into five areas: stable area with as-cast grain, stable area with homogeneous grain resulting from dynamic recovery, instability area with as-cast grain, instability area with the second phase and instability area with mixed grains. In consideration of microstructure characteristics in the above five areas of the processing map, the stable area with homogeneous grain resulting from dynamic recovery, namely the temperatures at 425465 ℃ and the strain rates at 0.01^-1 s^-1, is suggested to be suitable processing window for the as-cast 7075 aluminum alloy.展开更多
Direct quenching and tempering (DQ-T) of hot rolled steel section has been widely used in steel mill for the sake of improvement of mechanical properties and energy saving. Temperature history and microstructural ev...Direct quenching and tempering (DQ-T) of hot rolled steel section has been widely used in steel mill for the sake of improvement of mechanical properties and energy saving. Temperature history and microstructural evolution during hot rolling plays a major role in the properties of direct quenched and tempered products. The mathematical and physical modeling of hot forming processes is becoming a very important tool for design and development of required products as well as predicting the microstructure and the properties of the components. These models were mostly used to predict austenite grain size (AGS), dynamic, recta-dynamic and static recrystallization in the rods immediately after hot rolling and prior to DQ process. The hot compression tests were carried out on 42CrMo4 steel in the temperature range of 900-1 100 ℃ and the strain rate range of 0. 05-1 s^-1 in order to study the high tempera- ture softening behavior of the steel. For the exact prediction of flow stress, the effective stress-effective strain curves were obtained from experiments under various conditions. On the basis of experimental results, the dynamic recrystallization fraction (DRX), AGS, hot deformation and activation energy behavior were investigated. It was found that the calculated results were in good agreement with the experimental flow stress and microstructure of the steel for different conditions of hot deformation.展开更多
基金financially supported by the National Science and Technology Major Project of China(No.2009ZX04005-031-11)the EU Marie Curie Actions–Mat Pro Future Project(No.FP7-PEOPLE-2012-IRSES-318968)the‘‘111"Project of China(No.B08040)
文摘The true stress-strain curves of as-cast 7075 aluminum alloy have been obtained by isothermal compression tests at temperatures of 300 500 ~C and strain rates of 0.01 10 s i. The plastic flow instability map is established based on Gegel B and Murthy instability criteria because the deformed compression samples suggest that the combination of the above two instability criteria has more comprehensive crack prediction ability. And the processing map based on Dynamic Mate- rial Model (DMM) of as-cast 7075 aluminum alloy has been developed through a superposition of the established instability map and power dissipation map. In terms of microstructure of the deformed samples and whether plastic flow is stable or not, the processing map can be divided into five areas: stable area with as-cast grain, stable area with homogeneous grain resulting from dynamic recovery, instability area with as-cast grain, instability area with the second phase and instability area with mixed grains. In consideration of microstructure characteristics in the above five areas of the processing map, the stable area with homogeneous grain resulting from dynamic recovery, namely the temperatures at 425465 ℃ and the strain rates at 0.01^-1 s^-1, is suggested to be suitable processing window for the as-cast 7075 aluminum alloy.
文摘Direct quenching and tempering (DQ-T) of hot rolled steel section has been widely used in steel mill for the sake of improvement of mechanical properties and energy saving. Temperature history and microstructural evolution during hot rolling plays a major role in the properties of direct quenched and tempered products. The mathematical and physical modeling of hot forming processes is becoming a very important tool for design and development of required products as well as predicting the microstructure and the properties of the components. These models were mostly used to predict austenite grain size (AGS), dynamic, recta-dynamic and static recrystallization in the rods immediately after hot rolling and prior to DQ process. The hot compression tests were carried out on 42CrMo4 steel in the temperature range of 900-1 100 ℃ and the strain rate range of 0. 05-1 s^-1 in order to study the high tempera- ture softening behavior of the steel. For the exact prediction of flow stress, the effective stress-effective strain curves were obtained from experiments under various conditions. On the basis of experimental results, the dynamic recrystallization fraction (DRX), AGS, hot deformation and activation energy behavior were investigated. It was found that the calculated results were in good agreement with the experimental flow stress and microstructure of the steel for different conditions of hot deformation.