The influence of different types of roots on the soil is complex and still remains unclear.Four in-situ extrusion tests were conducted on two types of root systems,namely fibrous and tap root system,for three plants,E...The influence of different types of roots on the soil is complex and still remains unclear.Four in-situ extrusion tests were conducted on two types of root systems,namely fibrous and tap root system,for three plants,Eleusine indica,Potentilla anserine,and Artemisia argyi,according to the classification in Botany,and the thrust-displacement curves and failure patterns of different samples were analysed by comparison to fill the aforementioned gap.Results reveal that the roots can reduce the characteristics of soil brittleness and enhance its capability to resist large deformation,and different root types contribute different effects to the strain-hardening behavior of the root-soil mass.The contribution of the fibrous root system to strength is limited,whilst the tap root system substantially enhances strength and stiffness.Results of failure patterns show that fibrous and tap root systems affect soil solidification and surface cracking reduction.However,the effect of the tap root system depends on the composition of lateral and tap roots:long and rich lateral roots are effective for resisting the creation of cracks,but thick tap roots with few and thin lateral roots may lead to several surface cracks.展开更多
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA23090402)the National Natural Science Foundation of China(Nos.41790442,41825018)the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(No.2019QZKK0904)。
文摘The influence of different types of roots on the soil is complex and still remains unclear.Four in-situ extrusion tests were conducted on two types of root systems,namely fibrous and tap root system,for three plants,Eleusine indica,Potentilla anserine,and Artemisia argyi,according to the classification in Botany,and the thrust-displacement curves and failure patterns of different samples were analysed by comparison to fill the aforementioned gap.Results reveal that the roots can reduce the characteristics of soil brittleness and enhance its capability to resist large deformation,and different root types contribute different effects to the strain-hardening behavior of the root-soil mass.The contribution of the fibrous root system to strength is limited,whilst the tap root system substantially enhances strength and stiffness.Results of failure patterns show that fibrous and tap root systems affect soil solidification and surface cracking reduction.However,the effect of the tap root system depends on the composition of lateral and tap roots:long and rich lateral roots are effective for resisting the creation of cracks,but thick tap roots with few and thin lateral roots may lead to several surface cracks.