The present work provides a novel method for calculating vertical velocity based on continuity equations in a pressure coordinate system.The method overcomes the disadvantage of accumulation of calculating errors of h...The present work provides a novel method for calculating vertical velocity based on continuity equations in a pressure coordinate system.The method overcomes the disadvantage of accumulation of calculating errors of horizontal divergence in current kinematics methods during the integration for calculating vertical velocity,and consequently avoids its subsequent correction.In addition,through modifications of the continuity equations,it shows that the vorticity of the vertical shear vector(VVSV) is proportional to-ω,the vertical velocity in p coordinates.Furthermore,if the change of ω in the horizontal direction is neglected,the vorticity of the horizontal vorticity vector is proportional to-ω.When ω is under a fluctuating state in the vertical direction,the updraft occurs when the vector of horizontal vorticity rotates counterclockwise;the downdraft occurs when rotating clockwise.The validation result indicates that the present method is generally better than the vertical velocity calculated by the ω equation using the wet Q-vector divergence as a forcing term,and the vertical velocity calculated by utilizing the kinematics method is followed by the O'Brien method for correction.The plus-minus sign of the vertical velocity obtained with this method is not correlated with the intensity of d BZ,but the absolute error increases when d BZ is >=40.This method demonstrates that it is a good reflection of the direction of the vertical velocity.展开更多
The 3-D spiral structure resulting from the balance between the pressure gradient force, Coriolis force, and viscous force is a common atmospheric motion pattern. If the nonlinear advective terms are considered, this... The 3-D spiral structure resulting from the balance between the pressure gradient force, Coriolis force, and viscous force is a common atmospheric motion pattern. If the nonlinear advective terms are considered, this typical pattern can be bifurcated. It is shown that the surface low pressure with convergent cyclonic vorticity and surface high pressure with divergent anticyclonic vorticity are all stable under certain conditions. The anomalous structure with convergent anticyclonic vorticity is always unstable. But the anomalous weak high pressure structure with convergent cyclonic vorticity can exist, and this denotes the cyclone’s dying out.展开更多
Three typhoons, Goni, Morakot and Etau which were generated in Western Pacific in 2009, are successfully simulated by the WRF model. The horizontal and vertical vorticity and their interaction are analyzed and diagnos...Three typhoons, Goni, Morakot and Etau which were generated in Western Pacific in 2009, are successfully simulated by the WRF model. The horizontal and vertical vorticity and their interaction are analyzed and diagnosed by using the simulation results. It is shown that their resultant vectors had a fixed pattern in the evolution process of the three typhoons: The horizontal vorticity converged to the tropical cyclone(TC) center below 900 h Pa level, flowed out from it at around 900 to 800 h Pa, and flowed in between 800 h Pa and 700 h Pa. If multiple maximum wind speed centers showed up, the horizontal vorticity converged to the center of the typhoon below the maximum wind speed center and diverged from the TC center above the maximum wind speed center. At low levels, the three typhoons interacted with each other through vertical circulation generated by the vortex tube. This circulation was mainly generated by the eastward or westward horizontal vorticity vectors. Clouds and precipitation were generated on the ascending branch of the vertical circulation. The vortex tubes often flowed toward the southwest of the right TC from the northeast of the left TC. According to the full vorticity equation, the horizontal vorticity converted into the vertical vorticity near the maximum wind speed center below 850 h Pa level, and the period of most intense conversion was consistent with the intensification period of TC, while the vorticity advection was against the intensification. The vertical vorticity converted into the horizontal vorticity from 800 h Pa to 600 h Pa, and the wind speed decreased above the maximum wind speed region at low levels.展开更多
基金National Key Basic Research Development Program"973"(2013CB430103,2009CB421503)National Natural Science Funding(41375058,41530427)State Key Laboratory of Severe Weather,Chinese Academy of Meteorological Sciences(2015LASW-A07)
文摘The present work provides a novel method for calculating vertical velocity based on continuity equations in a pressure coordinate system.The method overcomes the disadvantage of accumulation of calculating errors of horizontal divergence in current kinematics methods during the integration for calculating vertical velocity,and consequently avoids its subsequent correction.In addition,through modifications of the continuity equations,it shows that the vorticity of the vertical shear vector(VVSV) is proportional to-ω,the vertical velocity in p coordinates.Furthermore,if the change of ω in the horizontal direction is neglected,the vorticity of the horizontal vorticity vector is proportional to-ω.When ω is under a fluctuating state in the vertical direction,the updraft occurs when the vector of horizontal vorticity rotates counterclockwise;the downdraft occurs when rotating clockwise.The validation result indicates that the present method is generally better than the vertical velocity calculated by the ω equation using the wet Q-vector divergence as a forcing term,and the vertical velocity calculated by utilizing the kinematics method is followed by the O'Brien method for correction.The plus-minus sign of the vertical velocity obtained with this method is not correlated with the intensity of d BZ,but the absolute error increases when d BZ is >=40.This method demonstrates that it is a good reflection of the direction of the vertical velocity.
基金Many thanks are due to sup-port from the Ministry of Science and Technology of China through a special public welfare project under Grant No.2002DIB20070from the National Natural Science Foundation of China(Grant No.40305006).
文摘 The 3-D spiral structure resulting from the balance between the pressure gradient force, Coriolis force, and viscous force is a common atmospheric motion pattern. If the nonlinear advective terms are considered, this typical pattern can be bifurcated. It is shown that the surface low pressure with convergent cyclonic vorticity and surface high pressure with divergent anticyclonic vorticity are all stable under certain conditions. The anomalous structure with convergent anticyclonic vorticity is always unstable. But the anomalous weak high pressure structure with convergent cyclonic vorticity can exist, and this denotes the cyclone’s dying out.
基金National Key Basic Research Development Program“973”(2013CB430103)State Key Laboratory of Severe Weather,Chinese Academy Meteorological Sciences(2015LASW-A07)Project Supported by the Jiangsu Province Ordinary University Graduate Student Scientific Research and Innovation Program(CXZZ12_0495)
文摘Three typhoons, Goni, Morakot and Etau which were generated in Western Pacific in 2009, are successfully simulated by the WRF model. The horizontal and vertical vorticity and their interaction are analyzed and diagnosed by using the simulation results. It is shown that their resultant vectors had a fixed pattern in the evolution process of the three typhoons: The horizontal vorticity converged to the tropical cyclone(TC) center below 900 h Pa level, flowed out from it at around 900 to 800 h Pa, and flowed in between 800 h Pa and 700 h Pa. If multiple maximum wind speed centers showed up, the horizontal vorticity converged to the center of the typhoon below the maximum wind speed center and diverged from the TC center above the maximum wind speed center. At low levels, the three typhoons interacted with each other through vertical circulation generated by the vortex tube. This circulation was mainly generated by the eastward or westward horizontal vorticity vectors. Clouds and precipitation were generated on the ascending branch of the vertical circulation. The vortex tubes often flowed toward the southwest of the right TC from the northeast of the left TC. According to the full vorticity equation, the horizontal vorticity converted into the vertical vorticity near the maximum wind speed center below 850 h Pa level, and the period of most intense conversion was consistent with the intensification period of TC, while the vorticity advection was against the intensification. The vertical vorticity converted into the horizontal vorticity from 800 h Pa to 600 h Pa, and the wind speed decreased above the maximum wind speed region at low levels.