The pitching motions of supercavitating vehicles could not be avoided due to the lost water buoyancy. In order to have some insight for the design of the supercavitating vehicles, the fixed frequency and free pitching...The pitching motions of supercavitating vehicles could not be avoided due to the lost water buoyancy. In order to have some insight for the design of the supercavitating vehicles, the fixed frequency and free pitching motions are investigated. A numerical predicting method based on the relative motion principle and the non-inertia coordinate system is proposed to simulate the free pitching motions of supercavitating vehicles in the longitudinal plane. Homogeneous and two fluid multiphase models are used to predict the natural and the ventilated supercavitating flows. In the fixed frequency pitching motions, a variety of working conditions are considered, including the pitching angular velocities and the supercavity scales and the results are found to be consistent with the available experimental results in literature. The mesh deformation technology controlled by the moment of momentum equation is adopted to study the free pitching motions and finally to obtain the planing states proposed by Savchenko. The numerical method is validated for predicting the pitching motions of supercavitating vehicles and is found to enjoy better calculation efficiency as comparing with the mesh regeneration technology.展开更多
A new approach and a new related distribution system are proposed to address the issue of uneven steam injection caused by the different suction capacities of the used wells during the application of steam“stimulatio...A new approach and a new related distribution system are proposed to address the issue of uneven steam injection caused by the different suction capacities of the used wells during the application of steam“stimulation”methods for enhanced oil recovery.The new distribution system consists of a swirler,spiral dividing baffles,and critical flow nozzles.Numerical simulations are used to analyze the flow-field and degree of steam homogeneity obtained with such an approach.The results indicate that a higher inlet pressure leads to better results.Additionally,the internal flow field becomes more stable,and the deviation from an even distribution reduces to±4.0%even when the resistance of each branch is inconsistent.Furthermore,field tests have yielded satisfactory results.展开更多
The scarcity of wettability,insufficient active sites,and low surface area of graphite felt(GF)have long been suppressing the performance of vanadium redox flow batteries(VRFBs).Herein,an ultra-homogeneous multipledim...The scarcity of wettability,insufficient active sites,and low surface area of graphite felt(GF)have long been suppressing the performance of vanadium redox flow batteries(VRFBs).Herein,an ultra-homogeneous multipledimensioned defect,including nano-scale etching and atomic-scale N,O codoping,was used to modify GF by the molten salt system.NH_(4)Cl and KClO_(3) were added simultaneously to the system to obtain porous N/O co-doped electrode(GF/ON),where KClO_(3) was used to ultra-homogeneously etch,and O-functionalize electrode,and NH4Cl was used as N dopant,respectively.GF/ON presents better electrochemical catalysis for VO_(2)+/VO_(2)+ and V3+/V2+ reactions than only O-functionalized electrodes(GF/O)and GF.The enhanced electrochemical properties are attributed to an increase in active sites,surface area,and wettability,as well as the synergistic effect of N and O,which is also supported by the density functional theory calculations.Further,the cell using GF/ON shows higher discharge capacity,energy efficiency,and stability for cycling performance than the pristine cell at 140 mA cm^(−2) for 200 cycles.Moreover,the energy efficiency of the modified cell is increased by 9.7% from 55.2% for the pristine cell at 260 mA cm^(−2).Such an ultra-homogeneous etching with N and O co-doping through“boiling”molten salt medium provides an effective and practical application potential way to prepare superior electrodes for VRFB.展开更多
The gas-liquid two-phase homogenous flow has been extensively investigated without the effect of gas release.However,the dissolved gas will release when internal water pressure drops below saturation pressure during h...The gas-liquid two-phase homogenous flow has been extensively investigated without the effect of gas release.However,the dissolved gas will release when internal water pressure drops below saturation pressure during hydraulic transients.This results in inaccuracy or even invalidity of the existing model for homogenous flows,especially for the reproduction of two-phase mass transfer processes.To address this problem,this paper couples the gas release model with conservation equations of homogenous flows,which are numerically solved by the second-order Godunov-type scheme(GTS).Specifically,a virtual-cell method is adopted at system boundaries to achieve the same second-order accuracy as interior cells,which is realized by the monotonic upwind scheme for conservation laws(MUSCL-Hancock scheme).Simulated pressure curves by the proposed model are compared with a series of analytical,numerical and experimental results.It indicates that the proposed model with gas release effects reproduces actual pressure responses most accurately,with minimum relative error and root mean squared error compared with experimental data.Moreover,the gas release leads to dynamic synchronous fluctuations of void fraction,wave speed and pressure head,including the opposite trends of void fraction and pressure,and higher void fraction leading to greater wave speed depression.Furthermore,sensitivity analysis is concluded with recommended Courant number,and different gas release effects in different initial void fractions.Present research increases the basic understanding of two-phase mass transfer processes and their implications for hydraulic transients.展开更多
The concept of vortex is crucial in both understanding and modeling of turbulence.For large eddy simulation(LES),the effect of small-scale eddies onto the large scales or the resolved flow field is modeled by subgrid ...The concept of vortex is crucial in both understanding and modeling of turbulence.For large eddy simulation(LES),the effect of small-scale eddies onto the large scales or the resolved flow field is modeled by subgrid stress models.Even though the rotating motions of fluids,i.e.,vortices or eddies are central in developing turbulent models,vortex identification methods are seldom used in these models.In this study,we develop a new subgrid model based on the Liutex vector,a new quantity introduced to decompose fluid motions into rigid rotation,pure shear and stretching,and thus identify vortices.The new model is then applied in a decaying homogeneous isotropic turbulence(DHIT)and a turbulent channel flow at Reynolds number Reτ=180.It is shown that the new model can predict accurate energy spectra compared with experiments in DHIT and give a well-matched velocity profile in turbulent channel flow without changing the form of the model.Future directions include improvement of the Liutex based model,for example developing anisotropic subgrid models,and its applications in various turbulent flows.展开更多
基金Project support by the Major National Natural Science Founation of China(Grant No.10832007)
文摘The pitching motions of supercavitating vehicles could not be avoided due to the lost water buoyancy. In order to have some insight for the design of the supercavitating vehicles, the fixed frequency and free pitching motions are investigated. A numerical predicting method based on the relative motion principle and the non-inertia coordinate system is proposed to simulate the free pitching motions of supercavitating vehicles in the longitudinal plane. Homogeneous and two fluid multiphase models are used to predict the natural and the ventilated supercavitating flows. In the fixed frequency pitching motions, a variety of working conditions are considered, including the pitching angular velocities and the supercavity scales and the results are found to be consistent with the available experimental results in literature. The mesh deformation technology controlled by the moment of momentum equation is adopted to study the free pitching motions and finally to obtain the planing states proposed by Savchenko. The numerical method is validated for predicting the pitching motions of supercavitating vehicles and is found to enjoy better calculation efficiency as comparing with the mesh regeneration technology.
基金The authors would like to acknowledge the support provided by Supported By Open Fund of Hubei Key Laboratory of Oil and Gas Drilling and Production Engineering(Yangtze University),YQZC202309.
文摘A new approach and a new related distribution system are proposed to address the issue of uneven steam injection caused by the different suction capacities of the used wells during the application of steam“stimulation”methods for enhanced oil recovery.The new distribution system consists of a swirler,spiral dividing baffles,and critical flow nozzles.Numerical simulations are used to analyze the flow-field and degree of steam homogeneity obtained with such an approach.The results indicate that a higher inlet pressure leads to better results.Additionally,the internal flow field becomes more stable,and the deviation from an even distribution reduces to±4.0%even when the resistance of each branch is inconsistent.Furthermore,field tests have yielded satisfactory results.
基金supported by the National Natural Science Foundation of China(No.51872090)Natural Science Foundation of Hebei Province(No.E2019209433,E2022209158)Colleges and Universities in Hebei Province Science and Technology Research Project(No.JZX2024026).
文摘The scarcity of wettability,insufficient active sites,and low surface area of graphite felt(GF)have long been suppressing the performance of vanadium redox flow batteries(VRFBs).Herein,an ultra-homogeneous multipledimensioned defect,including nano-scale etching and atomic-scale N,O codoping,was used to modify GF by the molten salt system.NH_(4)Cl and KClO_(3) were added simultaneously to the system to obtain porous N/O co-doped electrode(GF/ON),where KClO_(3) was used to ultra-homogeneously etch,and O-functionalize electrode,and NH4Cl was used as N dopant,respectively.GF/ON presents better electrochemical catalysis for VO_(2)+/VO_(2)+ and V3+/V2+ reactions than only O-functionalized electrodes(GF/O)and GF.The enhanced electrochemical properties are attributed to an increase in active sites,surface area,and wettability,as well as the synergistic effect of N and O,which is also supported by the density functional theory calculations.Further,the cell using GF/ON shows higher discharge capacity,energy efficiency,and stability for cycling performance than the pristine cell at 140 mA cm^(−2) for 200 cycles.Moreover,the energy efficiency of the modified cell is increased by 9.7% from 55.2% for the pristine cell at 260 mA cm^(−2).Such an ultra-homogeneous etching with N and O co-doping through“boiling”molten salt medium provides an effective and practical application potential way to prepare superior electrodes for VRFB.
基金supported by the National Natural Science Foundation of China(Grant Nos.51839008,51679066)supported by the Fok Ying Tong Education Foundation (Grant No. 161068)the Postgraduate Research and Practice Innovation Program of Jiangsu Province (Grant No. KYCX23_0724).
文摘The gas-liquid two-phase homogenous flow has been extensively investigated without the effect of gas release.However,the dissolved gas will release when internal water pressure drops below saturation pressure during hydraulic transients.This results in inaccuracy or even invalidity of the existing model for homogenous flows,especially for the reproduction of two-phase mass transfer processes.To address this problem,this paper couples the gas release model with conservation equations of homogenous flows,which are numerically solved by the second-order Godunov-type scheme(GTS).Specifically,a virtual-cell method is adopted at system boundaries to achieve the same second-order accuracy as interior cells,which is realized by the monotonic upwind scheme for conservation laws(MUSCL-Hancock scheme).Simulated pressure curves by the proposed model are compared with a series of analytical,numerical and experimental results.It indicates that the proposed model with gas release effects reproduces actual pressure responses most accurately,with minimum relative error and root mean squared error compared with experimental data.Moreover,the gas release leads to dynamic synchronous fluctuations of void fraction,wave speed and pressure head,including the opposite trends of void fraction and pressure,and higher void fraction leading to greater wave speed depression.Furthermore,sensitivity analysis is concluded with recommended Courant number,and different gas release effects in different initial void fractions.Present research increases the basic understanding of two-phase mass transfer processes and their implications for hydraulic transients.
基金Project supported by the National Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No.22KJB130011)the Supercomputing Center in Yancheng(Grant No.FW(W)20221001).
文摘The concept of vortex is crucial in both understanding and modeling of turbulence.For large eddy simulation(LES),the effect of small-scale eddies onto the large scales or the resolved flow field is modeled by subgrid stress models.Even though the rotating motions of fluids,i.e.,vortices or eddies are central in developing turbulent models,vortex identification methods are seldom used in these models.In this study,we develop a new subgrid model based on the Liutex vector,a new quantity introduced to decompose fluid motions into rigid rotation,pure shear and stretching,and thus identify vortices.The new model is then applied in a decaying homogeneous isotropic turbulence(DHIT)and a turbulent channel flow at Reynolds number Reτ=180.It is shown that the new model can predict accurate energy spectra compared with experiments in DHIT and give a well-matched velocity profile in turbulent channel flow without changing the form of the model.Future directions include improvement of the Liutex based model,for example developing anisotropic subgrid models,and its applications in various turbulent flows.