An intrinsic extension of Pad′e approximation method, called the generalized Pad′e approximation method, is proposed based on the classic Pad′e approximation theorem. According to the proposed method, the numerator...An intrinsic extension of Pad′e approximation method, called the generalized Pad′e approximation method, is proposed based on the classic Pad′e approximation theorem. According to the proposed method, the numerator and denominator of Pad′e approximant are extended from polynomial functions to a series composed of any kind of function, which means that the generalized Pad′e approximant is not limited to some forms, but can be constructed in different forms in solving different problems. Thus, many existing modifications of Pad′e approximation method can be considered to be the special cases of the proposed method. For solving homoclinic and heteroclinic orbits of strongly nonlinear autonomous oscillators, two novel kinds of generalized Pad′e approximants are constructed. Then, some examples are given to show the validity of the present method. To show the accuracy of the method, all solutions obtained in this paper are compared with those of the Runge–Kutta method.展开更多
The main aims of this paper are to study the persistence of homoclinic and heteroclinic orbits of the reduced systems on normally hyperbolic critical manifolds, and also the limit cycle bifurcations either from the ho...The main aims of this paper are to study the persistence of homoclinic and heteroclinic orbits of the reduced systems on normally hyperbolic critical manifolds, and also the limit cycle bifurcations either from the homoclinic loop of the reduced systems or from a family of periodic orbits of the layer systems. For the persistence of homoclinic and heteroclinic orbits, and the limit cycles bifurcating from a homolinic loop of the reduced systems, we provide a new and readily detectable method to characterize them compared with the usual Melnikov method when the reduced system forms a generalized rotated vector field. To determine the limit cycles bifurcating from the families of periodic orbits of the layer systems, we apply the averaging methods.We also provide two four-dimensional singularly perturbed differential systems, which have either heteroclinic or homoclinic orbits located on the slow manifolds and also three limit cycles bifurcating from the periodic orbits of the layer system.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11172093 and 11372102)the Hunan Provincial Innovation Foundation for Postgraduate,China(Grant No.CX2012B159)
文摘An intrinsic extension of Pad′e approximation method, called the generalized Pad′e approximation method, is proposed based on the classic Pad′e approximation theorem. According to the proposed method, the numerator and denominator of Pad′e approximant are extended from polynomial functions to a series composed of any kind of function, which means that the generalized Pad′e approximant is not limited to some forms, but can be constructed in different forms in solving different problems. Thus, many existing modifications of Pad′e approximation method can be considered to be the special cases of the proposed method. For solving homoclinic and heteroclinic orbits of strongly nonlinear autonomous oscillators, two novel kinds of generalized Pad′e approximants are constructed. Then, some examples are given to show the validity of the present method. To show the accuracy of the method, all solutions obtained in this paper are compared with those of the Runge–Kutta method.
基金supported by National Natural Science Foundation of China(Grant No.11671254)Innovation Program of Shanghai Municipal Education Commission(Grant No.15ZZ012)
文摘The main aims of this paper are to study the persistence of homoclinic and heteroclinic orbits of the reduced systems on normally hyperbolic critical manifolds, and also the limit cycle bifurcations either from the homoclinic loop of the reduced systems or from a family of periodic orbits of the layer systems. For the persistence of homoclinic and heteroclinic orbits, and the limit cycles bifurcating from a homolinic loop of the reduced systems, we provide a new and readily detectable method to characterize them compared with the usual Melnikov method when the reduced system forms a generalized rotated vector field. To determine the limit cycles bifurcating from the families of periodic orbits of the layer systems, we apply the averaging methods.We also provide two four-dimensional singularly perturbed differential systems, which have either heteroclinic or homoclinic orbits located on the slow manifolds and also three limit cycles bifurcating from the periodic orbits of the layer system.