In this article, the overset grid assembly method is improved to efficiently solve several critical problems that occur when applying overset grids to the complicated geometries and moving body. First, instead of usin...In this article, the overset grid assembly method is improved to efficiently solve several critical problems that occur when applying overset grids to the complicated geometries and moving body. First, instead of using the two-step searching (i.e. cut and paste), a single-step searching method based on the grid cell size is proposed to modify holes and optimize the grid overlapping automatically. Second, discrepancies between the wall surface representations, where the grids overlap, are handled by introducing the wall's normal directions to the hole-map and projecting the interpolated points on the recipient mesh into the donor mesh. Finally, the dynamic overset method is modified to address the complex moving body problem. At every time step, the initial hole surface of the previous time step is dynamically adjusted to accomplish hole cutting and avoid the time consuming hole-map procedure. Numerical experiments show that the enhanced overset grid assembly method obtains satisfactory results.展开更多
基金National Natural Science Foundation of China (90716010)
文摘In this article, the overset grid assembly method is improved to efficiently solve several critical problems that occur when applying overset grids to the complicated geometries and moving body. First, instead of using the two-step searching (i.e. cut and paste), a single-step searching method based on the grid cell size is proposed to modify holes and optimize the grid overlapping automatically. Second, discrepancies between the wall surface representations, where the grids overlap, are handled by introducing the wall's normal directions to the hole-map and projecting the interpolated points on the recipient mesh into the donor mesh. Finally, the dynamic overset method is modified to address the complex moving body problem. At every time step, the initial hole surface of the previous time step is dynamically adjusted to accomplish hole cutting and avoid the time consuming hole-map procedure. Numerical experiments show that the enhanced overset grid assembly method obtains satisfactory results.