Labeling connected components and holes and computing the Euler number in a binary image are necessary for image analysis, pattern recognition, and computer (robot) vision, and are usually made independently of each...Labeling connected components and holes and computing the Euler number in a binary image are necessary for image analysis, pattern recognition, and computer (robot) vision, and are usually made independently of each other in conventional methods. This paper proposes a two-scan algorithm for labeling connected components and holes simultaneously in a binary image by use of the same data structure. With our algorithm, besides labeling, we can also easily calculate the number and the area of connected components and holes, as well as the Euler number. Our method is very simple in principle, and experimental results demonstrate that our method is much more efficient than conventional methods for various kinds of images in cases where both labeling and Euler number computing are necessary.展开更多
The influence of Reynolds number (Re) on probe measurements was investigated numerically, including the effects of the pressure holes and their geometry to obtain accurate hole-pressures. The results indicate that Re ...The influence of Reynolds number (Re) on probe measurements was investigated numerically, including the effects of the pressure holes and their geometry to obtain accurate hole-pressures. The results indicate that Re influences the probe measurements and cannot be neglected for Re larger than 10 5 and that the influence increases with Mach number (Ma). The calculations show that the pressures in the downwind holes are influenced more by Re than those of the upwind and central holes when the probe is at an angle. Thus, 7-hole probes may be more suitable for measurements at different Re than 5-hole probes.[展开更多
The identification of objects in binary images is a fundamental task in image analysis and pattern recognition tasks. The Euler number of a binary image is an important topological measure which is used as a feature i...The identification of objects in binary images is a fundamental task in image analysis and pattern recognition tasks. The Euler number of a binary image is an important topological measure which is used as a feature in image analysis. In this paper, a very fast algorithm for the detection and localization of the objects and the computation of the Euler number of a binary image is proposed. The proposed algorithm operates in one scan of the image and is based on the Image Block Representation (IBR) scheme. The proposed algorithm is more efficient than conventional pixel based algorithms in terms of execution speed and representation of the extracted information.展开更多
Hydrodynamic cavitation is a new technique in wastewater treatment processes. The degradation of Rbodamine B was studied on a 220 liters hydrodynamic cavitation setup using multiple hole orifice plates in this paper. ...Hydrodynamic cavitation is a new technique in wastewater treatment processes. The degradation of Rbodamine B was studied on a 220 liters hydrodynamic cavitation setup using multiple hole orifice plates in this paper. The experimental results showed that Rhodamine B was really decomposed by hydrodynamic cavitation. Some factors influencing degradation effect i.e. geometric parameters and operation conditions also were discussed. It was concluded there was the optimal ratio of total area of holes to crosssectional area of the pipe and the rate constant increased with a reduction in the value of the modified cavitional number.展开更多
基金supported in part by the Grant-in-Aid for Scientific Research (C) of the Ministry of Education, Science, Sports and Culture of Japan under Grant No. 23500222
文摘Labeling connected components and holes and computing the Euler number in a binary image are necessary for image analysis, pattern recognition, and computer (robot) vision, and are usually made independently of each other in conventional methods. This paper proposes a two-scan algorithm for labeling connected components and holes simultaneously in a binary image by use of the same data structure. With our algorithm, besides labeling, we can also easily calculate the number and the area of connected components and holes, as well as the Euler number. Our method is very simple in principle, and experimental results demonstrate that our method is much more efficient than conventional methods for various kinds of images in cases where both labeling and Euler number computing are necessary.
基金the Special Funds for Major State BasicResearch Project
文摘The influence of Reynolds number (Re) on probe measurements was investigated numerically, including the effects of the pressure holes and their geometry to obtain accurate hole-pressures. The results indicate that Re influences the probe measurements and cannot be neglected for Re larger than 10 5 and that the influence increases with Mach number (Ma). The calculations show that the pressures in the downwind holes are influenced more by Re than those of the upwind and central holes when the probe is at an angle. Thus, 7-hole probes may be more suitable for measurements at different Re than 5-hole probes.[
文摘The identification of objects in binary images is a fundamental task in image analysis and pattern recognition tasks. The Euler number of a binary image is an important topological measure which is used as a feature in image analysis. In this paper, a very fast algorithm for the detection and localization of the objects and the computation of the Euler number of a binary image is proposed. The proposed algorithm operates in one scan of the image and is based on the Image Block Representation (IBR) scheme. The proposed algorithm is more efficient than conventional pixel based algorithms in terms of execution speed and representation of the extracted information.
文摘Hydrodynamic cavitation is a new technique in wastewater treatment processes. The degradation of Rbodamine B was studied on a 220 liters hydrodynamic cavitation setup using multiple hole orifice plates in this paper. The experimental results showed that Rhodamine B was really decomposed by hydrodynamic cavitation. Some factors influencing degradation effect i.e. geometric parameters and operation conditions also were discussed. It was concluded there was the optimal ratio of total area of holes to crosssectional area of the pipe and the rate constant increased with a reduction in the value of the modified cavitional number.