Granites sampled from Garzê-Litang thrust, Longmen Shan thrust, Garzê and Litang strike-slip faults in the eastern Tibetan Plateau have been analyzed with apatite fission track thermochronological method in ...Granites sampled from Garzê-Litang thrust, Longmen Shan thrust, Garzê and Litang strike-slip faults in the eastern Tibetan Plateau have been analyzed with apatite fission track thermochronological method in this study. The measured fission track apparent ages, combined with the simulated annealing mod- eling of the thermal history, have been used to reconstruct the thermal evolutionary histories of the samples and interpret the active history of the thrusts and faults in these areas. Thermal history mod- eling shows that earlier tectonic cooling occurred in the Garzê-Litang thrust in Miocene (~20―16 Ma) whereas the later cooling occurred mainly in the Longmen Shan thrust since ~5 Ma. Our study sug- gests that the margin of eastern Tibetan Plateau was extended by stages: through strike-slip faults deformations and related thrusts, the upper crust formed the Garzê-Litang margin in the Miocene epoch and then moved to the Longmen Shan margin since ~5 Ma. During this process, the deformations of different phases in the eastern Tibetan Plateau were absorbed by the thrusts within them and conse- quently the tectonic events of long-distance slip and extrusion up to hundreds of kilometers have not been found.展开更多
Based on fission track dating of apatite, and measurement of vitrinite reflectance of rock samples from the Longmenshan (Longmen Mountain)area and the West Sichuan foreland basin and computer modelling it is concluded...Based on fission track dating of apatite, and measurement of vitrinite reflectance of rock samples from the Longmenshan (Longmen Mountain)area and the West Sichuan foreland basin and computer modelling it is concluded that (l)the Songpan-Garze fold belt has uplifted at least by 3-4 km with an uplift rate of no less than 0.3-0.4 mm/a since 10 Ma B.P.; (2) the Longmenshan thrust nappe belt has uplifted at least by 5-6 km with an uplift rate of more than 0.5- 0.6 mm /a since 10 Ma B.P.; (3) the Longmenshan detachment belt has uplifted by 1 - 2 km at a rate of 0.016-0.032 mm/a since 60 Ma B.P.; (4) the West Sichuan foreland basin has uplifted by 1.7-3 km at a rate of 0.028-0.05 mm/a since 60 Ma B.P.; (5) the uplift rate of the area on the west side of the Beichuan-Yingxiu-Xiaoguanzi fault for the last 10 Ma is 40 times as much as that on its east side; (6) the uplifting of the the Songpan - Garze fold belt and the subsidence of the West Sichuan foreland basin 60 Ma ago exhibit a mirro-image correlation, i.e. the rapid uplifting of the the Songpan-Garze fold belt was corresponding to the rapid subsidence of the basin;the Songpan-Garze fold belt has uplifted at a much greater rate than the West Sichuan foeland basin in the last 60 Ma;and (7) the palaeogeothermal gradient was 25℃ /km in the West Sichuan foreland basin.展开更多
The Huangshan Mountain Geopark is an important geological landmark and tourist attraction.In this paper,we apply fission track dating to examine the uplift and exhumation processes that created the Huangshan Mountains...The Huangshan Mountain Geopark is an important geological landmark and tourist attraction.In this paper,we apply fission track dating to examine the uplift and exhumation processes that created the Huangshan Mountains and provide a timeline for their development.In addition to being an important scientific contribution,this information can be used on guided tours and to promote tourism.The results of eight apatite fission-track analyses suggest three age groups:56,45-30,and 15 Ma.These age groups are related to the uplifting-erosion processes involved in forming ancient multilevel denudation planes at 85-50,45-30,and 24-5 Ma,respectively.The scenic area has experienced three stages of thermal evolution.The first stage occurred before 80 Ma and the third stage after 13 Ma.The three stages had varying cooling rates:2.69,0.62,and 4.23°C/Ma,respectively.Uplifting rates also varied:0.08,0.02,and 0.12 mm/a.The uplifting ranges were also variable:1.14,1.57,and 4.00 km,respectively.Significant uplifting differences between diverse areas are obvious and there were four magnitudes of cumulative uplifting range:4060-3950,3760-3490,3190-3070,and 2650 m.The surface uplifting range varied from 450 to 2230 m.Denudation and uplifting amount averaged 2340 and 3400 m,respectively.The 1060 m difference between them is the average elevation at present.展开更多
Fission track dating was applied to analyze the 20 samples from Nyainrong microcontinent, and we obtained 20 apatite and 15 zircon fission track ages. The results show single population grain ages with a single mean a...Fission track dating was applied to analyze the 20 samples from Nyainrong microcontinent, and we obtained 20 apatite and 15 zircon fission track ages. The results show single population grain ages with a single mean age and associated central ages mainly ranging from 108±7Ma to 35±4Ma.Their mean track lengths are 12.2-13.9 μm with a single peak. Zircon fission track age range from 78±3 Ma to 117±4 Ma. The results represented the two tectonic uplift events in the study area, namely the Cretaceous and Paleogene periods. According to thermal history modeling results, uplifting rates of two tectonic events is 0.31-0.1 mm/a and 0.07-0.04 mm/a respectively. Combined with field condition and study results, it is suggested that the Cretaceous tectonic uplift event was related to the closure ocean basin caused by Qaingtang-Lhasa collision, and the Paleogene tectonic uplift event was related to the south to thrust system caused by Indo-Asian collision.展开更多
Low temperature thermochronology plays a key role in the study of the tectonic evolution of the upper crust.History modeling of apatite fission-track requires the apparent age and the confined track-length distributio...Low temperature thermochronology plays a key role in the study of the tectonic evolution of the upper crust.History modeling of apatite fission-track requires the apparent age and the confined track-length distribution of spontaneous tracks.Obtaining length data does not require either thermal neutron irradiation or LA-ICP-MS measurements of the uranium content of the grains.This paper attempts to decouple the apatite fission-track age from the apatite fission-track length,but to combine the fission-track lengths with the respective apatite U-Th/He age to model the thermal history.The experiments were designed and conducted using a new Mathematica®modeling software“Low-T Thermo”.Results of this modeling show that the thermal history modeling of apatite U-Th/He and fission-track ages can constrain the apatite fission-track length thermal history in the He partial retention zone and fission-track partial annealing zone,respectively.It implies that this combination of apatite fissiontrack length and apatite U-Th/He age has not been implemented before but is presented here as an alternative way of determining thermal histories without the addition of apatite fission-track age.展开更多
This study provides an integrated interpretation for the Mesozoic-Cenozoic tectonothermal evolutionary history of the Permian strata in the Qishan area of the southwestern Weibei Uplift,Ordos Basin.Apatite fission-tra...This study provides an integrated interpretation for the Mesozoic-Cenozoic tectonothermal evolutionary history of the Permian strata in the Qishan area of the southwestern Weibei Uplift,Ordos Basin.Apatite fission-track and apatite/zircon(U-Th)/He thermochronometry,bitumen reflectance,thermal conductivity of rocks,paleotemperature recovery,and basin modeling were used to restore the Meso-Cenozoic tectonothermal history of the Permian Strata.The Triassic AFT data have a pooled age of^180±7 Ma with one age peak and P(χ2)=86%.The average value of corrected apatite(U-Th)/He age of two Permian sandstones is^168±4 Ma and a zircon(U-Th)/He age from the Cambrian strata is^231±14 Ma.Bitumen reflectance and maximum paleotemperature of two Ordovician mudstones are 1.81%,1.57%and^210℃,~196℃respectively.After undergoing a rapid subsidence and increasing temperature in Triassic influenced by intrusive rocks in some areas,the Permian strata experienced four cooling-uplift stages after the time when the maximum paleotemperature reached in late Jurassic:(1)A cooling stage(~163 Ma to^140 Ma)with temperatures ranging from^132℃to^53℃and a cooling rate of^3℃/Ma,an erosion thickness of^1900 m and an uplift rate of^82 m/Ma;(2)A cooling stage(~140 Ma to^52 Ma)with temperatures ranging from^53℃to^47℃and a cooling rate less than^0.1℃/Ma,an erosion thickness of^300 m and an uplift rate of^3 m/Ma;(3)(~52 Ma to^8 Ma)with^47℃to^43℃and^0.1℃/Ma,an erosion thickness of^500 m and an uplift rate of^11 m/Ma;(3)(~8 Ma to present)with^43℃to^20℃and^3℃/Ma,an erosion thickness of^650 m and an uplift rate of^81 m/Ma.The tectonothermal evolutionary history of the Qishan area in Triassic was influenced by the interaction of the Qinling Orogeny and the Weibei Uplift,and the south Qishan area had the earliest uplift-cooling time compared to other parts within the Weibei Uplift.The early Eocene at^52 Ma and the late Miocene at^8 Ma,as two significant turning points after which both the rate of uplift and the rate of temperature展开更多
It is a new attempt to study thermal evolution related to mineralization using the fission track (FT) method. Apatite and zircon fission track data are reported for 6 samples collected from Jiama ore district as well ...It is a new attempt to study thermal evolution related to mineralization using the fission track (FT) method. Apatite and zircon fission track data are reported for 6 samples collected from Jiama ore district as well as its periphery. The FT ages of apatites in the ore district are (16.1±0.9) Ma and (18.8±1.1) Ma and reflect the age of late period of hydrothermal mineralizing event. Apatite FT age of (22.0±4.3) Ma and zircon FT age of (20.9±2.0) Ma are related to the early period of mineralization. Another zircon FT age of (341.6±79.1) Ma, inheriting mineral source characteristic, has no connection with the mineralization. Based on the thermal history analysis, the mineralization began before 25-22 Ma. Cooling rate in the ore district is 5-6℃/Ma averagely, in which a slow cooling occurred at 90-80℃. About 2.7 km has been denuded and the denudation rate is higher than the uplifting rate.展开更多
The Qaidam Basin is the one of the three major petroliferous basins in northeastern Tibetan Plateau, which has experienced multiphase superimposition and transformation. The study of thermal history not only plays an ...The Qaidam Basin is the one of the three major petroliferous basins in northeastern Tibetan Plateau, which has experienced multiphase superimposition and transformation. The study of thermal history not only plays an important role on revealing the tectonic origin of the Qaidam Basin and the forming mechanism and uplift history of the Tibetan Plateau,but also can provide scientific evidence for the assessment of oil and gas resources. This work used balanced cross-section technique and apatite fission track ages with modeling of fission track length distribution to infer that the eastern Qaidam Basin has experienced significant tectonic movement in the Early Jurassic movement(~200 Ma), which caused the carboniferous uplift and denudation, the geological movement in the Late Cretaceous, characterized by early stretching and late northeast-southwest extrusion; the Himalayan movement in multi-stage development in eastern Qaidam Basin, which can be divided into the early Himalayan movement(41.1–33.6 Ma) and the late Himalayan movement(9.6–7.1 Ma, 2.9–1.8 Ma), and large-scale orogeny caused pre-existing faults reactivated in late Himalayan movement. On the basis of burial history reconstruction, the thermal history of eastern Qaidam Basin was restored. The result shows that the thermal history in eastern Qaidam Basin shows slow cooling characteristics; the paleo-geothermal gradient of eastern Qaidam Basin was 38–41.5℃/km, with an average value of 39.0℃/km in the Late Paleozoic, 29–35.2℃/km, with an average value of 33.0℃/km in the Early Paleogene; the geothermal gradient of the Qaidam Basin increased in the Late Paleogene, which was similar to the present geothermal gradient in the Late Neogene. The characteristics of the tectono-thermal evolution since Paleozoic in the eastern Qaidam Basin are mainly controlled by magmatic thermal events in the study area.展开更多
Some marked geological evidences suggest that there exists a deep-seated ductile thrust belt which leads rock melting to form granite in Litian district, SW Fujian, China. Following thrusting event, the lithosphere mu...Some marked geological evidences suggest that there exists a deep-seated ductile thrust belt which leads rock melting to form granite in Litian district, SW Fujian, China. Following thrusting event, the lithosphere must have experienced a thermal relaxation which resulted in the cooling and uplifting of the thrust belt. Since the fission track of zircon and apatite have different blocking temperatures, 230℃ and 83℃, respectively,展开更多
基金Supported by Chinese Academy of Sciences (Grant No. KZCX3-SW-143)Chinese Ministry of Science and Technology (Grant No. 2002CB412602) the National Natural Science Foundation of China (Grant No. 40234049)
文摘Granites sampled from Garzê-Litang thrust, Longmen Shan thrust, Garzê and Litang strike-slip faults in the eastern Tibetan Plateau have been analyzed with apatite fission track thermochronological method in this study. The measured fission track apparent ages, combined with the simulated annealing mod- eling of the thermal history, have been used to reconstruct the thermal evolutionary histories of the samples and interpret the active history of the thrusts and faults in these areas. Thermal history mod- eling shows that earlier tectonic cooling occurred in the Garzê-Litang thrust in Miocene (~20―16 Ma) whereas the later cooling occurred mainly in the Longmen Shan thrust since ~5 Ma. Our study sug- gests that the margin of eastern Tibetan Plateau was extended by stages: through strike-slip faults deformations and related thrusts, the upper crust formed the Garzê-Litang margin in the Miocene epoch and then moved to the Longmen Shan margin since ~5 Ma. During this process, the deformations of different phases in the eastern Tibetan Plateau were absorbed by the thrusts within them and conse- quently the tectonic events of long-distance slip and extrusion up to hundreds of kilometers have not been found.
基金the National Natural Science Foundation of china (poject No. 49070140)
文摘Based on fission track dating of apatite, and measurement of vitrinite reflectance of rock samples from the Longmenshan (Longmen Mountain)area and the West Sichuan foreland basin and computer modelling it is concluded that (l)the Songpan-Garze fold belt has uplifted at least by 3-4 km with an uplift rate of no less than 0.3-0.4 mm/a since 10 Ma B.P.; (2) the Longmenshan thrust nappe belt has uplifted at least by 5-6 km with an uplift rate of more than 0.5- 0.6 mm /a since 10 Ma B.P.; (3) the Longmenshan detachment belt has uplifted by 1 - 2 km at a rate of 0.016-0.032 mm/a since 60 Ma B.P.; (4) the West Sichuan foreland basin has uplifted by 1.7-3 km at a rate of 0.028-0.05 mm/a since 60 Ma B.P.; (5) the uplift rate of the area on the west side of the Beichuan-Yingxiu-Xiaoguanzi fault for the last 10 Ma is 40 times as much as that on its east side; (6) the uplifting of the the Songpan - Garze fold belt and the subsidence of the West Sichuan foreland basin 60 Ma ago exhibit a mirro-image correlation, i.e. the rapid uplifting of the the Songpan-Garze fold belt was corresponding to the rapid subsidence of the basin;the Songpan-Garze fold belt has uplifted at a much greater rate than the West Sichuan foeland basin in the last 60 Ma;and (7) the palaeogeothermal gradient was 25℃ /km in the West Sichuan foreland basin.
基金supported by National Natural Science Foundation of China(Grant Nos.40872141,40872068and10475093)the "111" Project(Grant No.B07011)National Basic Research Program of China(Grant No.2009CB421006)
文摘The Huangshan Mountain Geopark is an important geological landmark and tourist attraction.In this paper,we apply fission track dating to examine the uplift and exhumation processes that created the Huangshan Mountains and provide a timeline for their development.In addition to being an important scientific contribution,this information can be used on guided tours and to promote tourism.The results of eight apatite fission-track analyses suggest three age groups:56,45-30,and 15 Ma.These age groups are related to the uplifting-erosion processes involved in forming ancient multilevel denudation planes at 85-50,45-30,and 24-5 Ma,respectively.The scenic area has experienced three stages of thermal evolution.The first stage occurred before 80 Ma and the third stage after 13 Ma.The three stages had varying cooling rates:2.69,0.62,and 4.23°C/Ma,respectively.Uplifting rates also varied:0.08,0.02,and 0.12 mm/a.The uplifting ranges were also variable:1.14,1.57,and 4.00 km,respectively.Significant uplifting differences between diverse areas are obvious and there were four magnitudes of cumulative uplifting range:4060-3950,3760-3490,3190-3070,and 2650 m.The surface uplifting range varied from 450 to 2230 m.Denudation and uplifting amount averaged 2340 and 3400 m,respectively.The 1060 m difference between them is the average elevation at present.
基金financially supported by the geological survey project of China Geological Survey(Grant No:1212011120185 and Grant No:1212011120182)
文摘Fission track dating was applied to analyze the 20 samples from Nyainrong microcontinent, and we obtained 20 apatite and 15 zircon fission track ages. The results show single population grain ages with a single mean age and associated central ages mainly ranging from 108±7Ma to 35±4Ma.Their mean track lengths are 12.2-13.9 μm with a single peak. Zircon fission track age range from 78±3 Ma to 117±4 Ma. The results represented the two tectonic uplift events in the study area, namely the Cretaceous and Paleogene periods. According to thermal history modeling results, uplifting rates of two tectonic events is 0.31-0.1 mm/a and 0.07-0.04 mm/a respectively. Combined with field condition and study results, it is suggested that the Cretaceous tectonic uplift event was related to the closure ocean basin caused by Qaingtang-Lhasa collision, and the Paleogene tectonic uplift event was related to the south to thrust system caused by Indo-Asian collision.
基金supported by the National Natural Science Foundation of China(Nos.42072229,41102131)the Fundamental Research Fund for the Central Universities of China(No.12lgpy22)+2 种基金the Guangdong Natural Science Foundation(No.2021A1515011658)the Science and Technology Program of Guangzhou(No.202002030184)the China Scholarship Council。
文摘Low temperature thermochronology plays a key role in the study of the tectonic evolution of the upper crust.History modeling of apatite fission-track requires the apparent age and the confined track-length distribution of spontaneous tracks.Obtaining length data does not require either thermal neutron irradiation or LA-ICP-MS measurements of the uranium content of the grains.This paper attempts to decouple the apatite fission-track age from the apatite fission-track length,but to combine the fission-track lengths with the respective apatite U-Th/He age to model the thermal history.The experiments were designed and conducted using a new Mathematica®modeling software“Low-T Thermo”.Results of this modeling show that the thermal history modeling of apatite U-Th/He and fission-track ages can constrain the apatite fission-track length thermal history in the He partial retention zone and fission-track partial annealing zone,respectively.It implies that this combination of apatite fissiontrack length and apatite U-Th/He age has not been implemented before but is presented here as an alternative way of determining thermal histories without the addition of apatite fission-track age.
基金the Project “Constraints on lithospheric dynamic evolution and hydrocarbon accumulation from Late Mesozoic paleogeothermal field in Ordos and Qinshui Basins supported by NSFC (41630312)”the “Palaeogeothermal and uplift-related cooling history of complex structure zone, Restricted by thermochronology by NSFC (41602128)”+2 种基金the NSFC (41703055), the “research Grants by China Geological Survey (DD20160060)”the “Fundamental Research Funds for the Central Universities, CHD (300102279206, 300102278204)”the fund from China Scholarship Council (201806565017)
文摘This study provides an integrated interpretation for the Mesozoic-Cenozoic tectonothermal evolutionary history of the Permian strata in the Qishan area of the southwestern Weibei Uplift,Ordos Basin.Apatite fission-track and apatite/zircon(U-Th)/He thermochronometry,bitumen reflectance,thermal conductivity of rocks,paleotemperature recovery,and basin modeling were used to restore the Meso-Cenozoic tectonothermal history of the Permian Strata.The Triassic AFT data have a pooled age of^180±7 Ma with one age peak and P(χ2)=86%.The average value of corrected apatite(U-Th)/He age of two Permian sandstones is^168±4 Ma and a zircon(U-Th)/He age from the Cambrian strata is^231±14 Ma.Bitumen reflectance and maximum paleotemperature of two Ordovician mudstones are 1.81%,1.57%and^210℃,~196℃respectively.After undergoing a rapid subsidence and increasing temperature in Triassic influenced by intrusive rocks in some areas,the Permian strata experienced four cooling-uplift stages after the time when the maximum paleotemperature reached in late Jurassic:(1)A cooling stage(~163 Ma to^140 Ma)with temperatures ranging from^132℃to^53℃and a cooling rate of^3℃/Ma,an erosion thickness of^1900 m and an uplift rate of^82 m/Ma;(2)A cooling stage(~140 Ma to^52 Ma)with temperatures ranging from^53℃to^47℃and a cooling rate less than^0.1℃/Ma,an erosion thickness of^300 m and an uplift rate of^3 m/Ma;(3)(~52 Ma to^8 Ma)with^47℃to^43℃and^0.1℃/Ma,an erosion thickness of^500 m and an uplift rate of^11 m/Ma;(3)(~8 Ma to present)with^43℃to^20℃and^3℃/Ma,an erosion thickness of^650 m and an uplift rate of^81 m/Ma.The tectonothermal evolutionary history of the Qishan area in Triassic was influenced by the interaction of the Qinling Orogeny and the Weibei Uplift,and the south Qishan area had the earliest uplift-cooling time compared to other parts within the Weibei Uplift.The early Eocene at^52 Ma and the late Miocene at^8 Ma,as two significant turning points after which both the rate of uplift and the rate of temperature
基金the National Natural Science Foundation of China (Grant No.40072068) and the President Fund of the Chinese Academy of Sciences (Grant No. 99-775), and Laboratory of Nuclear Analysis Technique, CAS.
文摘It is a new attempt to study thermal evolution related to mineralization using the fission track (FT) method. Apatite and zircon fission track data are reported for 6 samples collected from Jiama ore district as well as its periphery. The FT ages of apatites in the ore district are (16.1±0.9) Ma and (18.8±1.1) Ma and reflect the age of late period of hydrothermal mineralizing event. Apatite FT age of (22.0±4.3) Ma and zircon FT age of (20.9±2.0) Ma are related to the early period of mineralization. Another zircon FT age of (341.6±79.1) Ma, inheriting mineral source characteristic, has no connection with the mineralization. Based on the thermal history analysis, the mineralization began before 25-22 Ma. Cooling rate in the ore district is 5-6℃/Ma averagely, in which a slow cooling occurred at 90-80℃. About 2.7 km has been denuded and the denudation rate is higher than the uplifting rate.
基金the National Natural Science Foundation of China (Grants No. 41772272 and 41302202)
文摘The Qaidam Basin is the one of the three major petroliferous basins in northeastern Tibetan Plateau, which has experienced multiphase superimposition and transformation. The study of thermal history not only plays an important role on revealing the tectonic origin of the Qaidam Basin and the forming mechanism and uplift history of the Tibetan Plateau,but also can provide scientific evidence for the assessment of oil and gas resources. This work used balanced cross-section technique and apatite fission track ages with modeling of fission track length distribution to infer that the eastern Qaidam Basin has experienced significant tectonic movement in the Early Jurassic movement(~200 Ma), which caused the carboniferous uplift and denudation, the geological movement in the Late Cretaceous, characterized by early stretching and late northeast-southwest extrusion; the Himalayan movement in multi-stage development in eastern Qaidam Basin, which can be divided into the early Himalayan movement(41.1–33.6 Ma) and the late Himalayan movement(9.6–7.1 Ma, 2.9–1.8 Ma), and large-scale orogeny caused pre-existing faults reactivated in late Himalayan movement. On the basis of burial history reconstruction, the thermal history of eastern Qaidam Basin was restored. The result shows that the thermal history in eastern Qaidam Basin shows slow cooling characteristics; the paleo-geothermal gradient of eastern Qaidam Basin was 38–41.5℃/km, with an average value of 39.0℃/km in the Late Paleozoic, 29–35.2℃/km, with an average value of 33.0℃/km in the Early Paleogene; the geothermal gradient of the Qaidam Basin increased in the Late Paleogene, which was similar to the present geothermal gradient in the Late Neogene. The characteristics of the tectono-thermal evolution since Paleozoic in the eastern Qaidam Basin are mainly controlled by magmatic thermal events in the study area.
基金Project supported by the National Natural Science Foundation of Chinathe Lab of Nuclear Analysis Techniques, Academia Sinica
文摘Some marked geological evidences suggest that there exists a deep-seated ductile thrust belt which leads rock melting to form granite in Litian district, SW Fujian, China. Following thrusting event, the lithosphere must have experienced a thermal relaxation which resulted in the cooling and uplifting of the thrust belt. Since the fission track of zircon and apatite have different blocking temperatures, 230℃ and 83℃, respectively,