Sodium butyrate is a histone deacetylase inhibitor that affects various types of brain damages.To investigate the effects of sodium butyrate on hippocampal dysfunction that occurs after whole-brain irradiation in anim...Sodium butyrate is a histone deacetylase inhibitor that affects various types of brain damages.To investigate the effects of sodium butyrate on hippocampal dysfunction that occurs after whole-brain irradiation in animal models and the effect of sodium butyrate on radiation exposure-induced cognitive impairments,adult C57BL/6 mice were intraperitoneally treated with 0.6 g/kg sodium butyrate before exposure to 10 Gy cranial irradiation.Cognitive impairment in adult C57BL/6 mice was evaluated via an object recognition test 30 days after irradiation.We also detected the expression levels of neurogenic cell markers(doublecortin)and phosphorylated cAMP response element binding protein/brain-derived neurotrophic factor.Radiation-exposed mice had decreased cognitive function and hippocampal doublecortin and phosphorylated cAMP response element binding protein/brain-derived neurotrophic factor expression.Sodium butyrate pretreatment reversed these changes.These findings suggest that sodium butyrate can improve radiation-induced cognitive dysfunction through inhibiting the decrease in hippocampal phosphorylated cAMP response element binding protein/brain-derived neurotrophic factor expression.The study procedures were approved by the Institutional Animal Care and Use Committee of Korea Institute of Radiological Medical Sciences(approval No.KIRAMS16-0002)on December 30,2016.展开更多
目的:观察氯胺酮和异丙酚对谷氨酸诱导体外培养大鼠海马星形胶质细胞损伤的影响。方法:取出生1-3 d Wistar大鼠海马星形胶质细胞,原代纯化培养3周。将细胞随机分为5组(n=9):C组为对照组,加入Hanks液;G组加入谷氨酸;GK组先加入...目的:观察氯胺酮和异丙酚对谷氨酸诱导体外培养大鼠海马星形胶质细胞损伤的影响。方法:取出生1-3 d Wistar大鼠海马星形胶质细胞,原代纯化培养3周。将细胞随机分为5组(n=9):C组为对照组,加入Hanks液;G组加入谷氨酸;GK组先加入谷氨酸,10 min后加入氯胺酮;GP组先加入谷氨酸,10 min后加入异丙酚;GPK组先加入谷氨酸,10 min后同时加入异丙酚和氯胺酮。培养24 h后分别检测各组上清液IL-1β、TNF-α和IL-10浓度、细胞凋亡率及胞内SOD活性和MDA含量,并观察细胞形态学改变。结果:与C组比较,G组星形胶质细胞凋亡增加(P〈0.01),未凋亡的细胞被激活增生肥大,IL-1β和TNF-α浓度升高(P〈0.01),IL-10浓度无明显变化(P〉0.05),SOD活性显著降低(P〈0.01),MDA含量明显增加(P〈0.01)。与G组比较,GK、GP和GPK组凋亡细胞减少(P〈0.05,P〈0.01),IL-1β和TNF-α降低(P〈0.05,P〈0.01),IL-10升高(P〈0.01),SOD活性增加而MDA含量低(P〈0.05,P〈0.01),细胞无明显增生肥大。GK组和GP组间比较差异无统计学意义(P〉0.05),GP组和GK组分别与GPK组比较差异有统计学意义(均P〈0.01)。结论:氯胺酮和异丙酚均可抑制谷氨酸引起的大鼠海马星形胶质细胞的凋亡和激活,通过抑制脂质过氧化反应,清除自由基,同时抑制炎性细胞因子分泌而发挥神经保护作用,且两者有协同作用。展开更多
目的:探究天麻乙醇提物(ethanolic extracts of Gastrodia elata,EEGE)对慢性应激抑郁模型小鼠行为、海马神经元损伤及海马突触体内游离Ca^(2+)浓度的影响。方法:采用长期不可预见性中等强度应激造成小鼠抑郁模型。测定各组小鼠体重变化...目的:探究天麻乙醇提物(ethanolic extracts of Gastrodia elata,EEGE)对慢性应激抑郁模型小鼠行为、海马神经元损伤及海马突触体内游离Ca^(2+)浓度的影响。方法:采用长期不可预见性中等强度应激造成小鼠抑郁模型。测定各组小鼠体重变化,Open-field法和糖水消耗实验测定各组小鼠的行为变化;Nissl染色法观察海马CA1,CA3区神经元形态及锥体细胞数目;以Fura-2负载及荧光分光光度计检测海马突触体内游离Ca^(2+)浓度。结果:与正常组比较,模型组小鼠模型组小鼠体呈现明显的抑郁样症状。EEGE低、高剂量组小鼠在第21天体重显著增加(P<0.001),其高剂量增加抑郁小鼠的爬格数(P<0.05);低、高剂量能明显增加抑郁小鼠的糖水消耗量(P<0.001),但无量效关系;低剂量组CA3区锥体细胞数目显著增多(P<0.001),且排列整齐、密集;高剂量组CA3区锥体细胞数目显著增多(P<0.05);低、高剂量能明显降低抑郁小鼠海马突触体内游离Ca^(2+)浓度(P<0.001)。结论:EEGE能改善小鼠的抑郁样行为;保护抑郁模型小鼠海马神经元损伤,可能与EEGE抑制海马神经细胞外Ca^(2+)内流,阻止Ca^(2+)超载相关。展开更多
Designing and/or searching for novel antioxidants against oxygen glucose effective strategy for the treatment of human isdlemic stroke. Selenium is deprivation (OGD)-induced oxidative damage represents an an essenti...Designing and/or searching for novel antioxidants against oxygen glucose effective strategy for the treatment of human isdlemic stroke. Selenium is deprivation (OGD)-induced oxidative damage represents an an essential trace dement, which is beneficial in the chemo- prevention and chemotherapy of cerebral ischemic stroke. The underlying mechanisms for its therapeutic effects, however, are not well documented. Selenocysteine (SeC) is a selenium-containing amino acid with neuroprotective potential. Studies have shown that SeC can reduce irradiation-induced DNA apoptosis by reducing DNA damage. In this study, the in vitro protective potential and mechanism of action of SeC against OGD-induced apoptosis and neurotoxicity were evaluated in HT22 mouse hippocampal neurons. We cultured HT22 cells in a glucose-free medium containing 2 mM Na2S402, which formed an OGD environment, for 90 minutes. Findings from MTT, flow cytometry and TUNEL staining showed obvious cytotoxicity and apoptosis in HT22 cells in the OGD condition. The activation of Caspa se-7 and Caspase-9 further revealed that OGD-induced apoptosis of HT22 cells was mainly achieved by triggering a mitochondrial-medi- ated pathway. Moreover, the OGD condition also induced serious DNA damage through the accumulation of reactive oxygen species and superoxide anions. However, SeC pre-treatment for 6 hours effectively inhibited OGD-induced cytotoxicity and apoptosis in HT22 cells by inhibiting reactive oxygen species-mediated oxidative damage. Our findings provide evidence that SeC has the potential to suppress OGD-induced oxidative damage and apoptosis in hippocampal neurons.展开更多
Background:Hippocampal damage caused by status epilepticus(SE)can bring about cognitive decline and emotional disorders,which are common clinical comorbidities in patients with epilepsy.It is therefore imperative to d...Background:Hippocampal damage caused by status epilepticus(SE)can bring about cognitive decline and emotional disorders,which are common clinical comorbidities in patients with epilepsy.It is therefore imperative to develop a novel therapeutic strat-egy for protecting hippocampal damage after SE.Mitochondrial dysfunction is one of contributing factors in epilepsy.Given the therapeutic benefits of mitochondrial replenishment by exogenous mitochondria,we hypothesized that transplantation of mitochondria would be capable of ameliorating hippocampal damage following SE.Methods:Pilocarpine was used to induced SE in mice.SE-generated cognitive de-cline and emotional disorders were determined using novel object recognition,the tail suspension test,and the open field test.SE-induced hippocampal pathology was assessed by quantifying loss of neurons and activation of microglia and astrocytes.The metabolites underlying mitochondrial transplantation were determined using metabonomics.Results:The results showed that peripheral administration of isolated mitochon-dria could improve cognitive deficits and depressive and anxiety-like behaviors.Exogenous mitochondria blunted the production of reactive oxygen species,pro-liferation of microglia and astrocytes,and loss of neurons in the hippocampus.The metabonomic profiles showed that mitochondrial transplantation altered multiple metabolic pathways such as sphingolipid signaling pathway and carbon metabolism.Among potential affected metabolites,mitochondrial transplantation decreased levels of sphingolipid(d18:1/18:0)and methylmalonic acid,and elevated levels of D-fructose-1,6-bisphosphate.Conclusion:To the best of our knowledge,these findings provide the first direct ex-perimental evidence that artificial mitochondrial transplantation is capable of amelio-rating hippocampal damage following SE.These new findings support mitochondrial transplantation as a promising therapeutic strategy for epilepsy-associated psychiat-ric and cognitive disorders.展开更多
BACKGROUND: Previous studies have suggested that the hippocampus is one of the neurotoxic target sites for lead. However, the molecular mechanisms of action, including the effect of lead on cell-cycle arrest, remain ...BACKGROUND: Previous studies have suggested that the hippocampus is one of the neurotoxic target sites for lead. However, the molecular mechanisms of action, including the effect of lead on cell-cycle arrest, remain poorly understood. OBJECTIVE: To investigate the effects of different lead concentrations on cell-cycle arrest, DNA damage, and cyclin D1 expression in primary cultured rat hippocampal neurons. DESIGN, TIME AND SETTING: A randomized, controlled, in vitro experiment was performed at the China Medical University between July 2008 and May 2009. MATERIALS: Antibodies specific to cyclin D1 and actin were synthesized and purified by Santa Cruz Biotechnology, USA. FACStar flow cytometer was purchased from Becton Dickinson, San Jose, California, USA. METHODS: Wistar rat hippocampal neurons were primary cultured for 7 days. Neurons in the control group were treated with 0.01 mol/L phosphate buffered saline. Neurons in the 0.2, 1.0, and 10 umol/L lead acetate groups were subjected to 0.2, 1.0, and 10 umol/L lead acetate. Subsequently hippocampal neurons in each group were cultured for 24 hours. MAIN OUTCOME MEASURES: The effects of lead on cell cycle were measured by flow cytometry, DNA damage was measured using the comet assay, and cyclin D1 expression was measured using Western blot analysis. RESULTS: Treatment of hippocampal neurons with 0.2 umol/L lead acetate did not significantly alter cell cycle phase distribution, i.e., sub-G1, S, G0/G1, G2/M, whereas treatment with 1.0 and 10 umol/L lead acetate significantly increased the percentage of S and sub-G1 phase cells (P 〈 0.05). Olive tail moment in all lead-treated groups and the percentage of DNA in the tail in 1.0 umol/L and 10 umol/L lead acetate groups were significantly greater compared with the control group (P 〈 0.05). In addition, the percentage of tail DNA was greater in the 0.2 umol/L lead acetate group compared with the control group (P 〉 0.05). Following incubation with 0.2, 1.0, and 10 umol/L lead acetate for 24 展开更多
Objective Sevoflurane preconditioning has been demonstrated to reduce cerebral ischemia–reperfusion(IR) injury,but the underlying mechanisms have not been fully elucidated.Besides,different protocols would usually ...Objective Sevoflurane preconditioning has been demonstrated to reduce cerebral ischemia–reperfusion(IR) injury,but the underlying mechanisms have not been fully elucidated.Besides,different protocols would usually lead to different results.The objective of this study was to determine whether dual exposure to sevoflurane improves the effect of anesthetic preconditioning against oxygen and glucose deprivation(OGD)injury in vitro.Methods Rat hippocampal slices under normoxic conditions(95%O2/5%CO2)were pre-exposed to sevoflurane 1,2 and 3 minimum alveolar concentration (MAC)for 30 min,once or twice,with 15-min washout after each exposure.The slices were then subjected to 13-min OGD treatment(95%N2/5%CO2,glucose-free),followed by 30-min reoxygenation.The population spikes(PSs)were recorded in the CA1 region of rat hippocampus.The percentage of PS amplitude at the end of 30-min reoxygenation to that before OGD treatment was calculated,since it could indicate the recovery degree of neuronal function.In addition,to assess the role of mitogen-activated protein kinases(MAPKs)in preconditioning,U0126,an inhibitor of extracellular signal–regulated protein kinase(MEK-ERK1/2,ERK1/2 MAPK),and SB203580,an inhibitor of p38 MAPK,were separately added 10 min before sevoflurane exposure.Results Preconditioning once with sevoflurane 1,2,and 3 MAC increased the percentage of PS amplitude at the end of 30-min reoxygenation to that before OGD treatment,from(15.13±3.79)%(control)to(31.88±5.36)%, (44.00±5.01)%,and(49.50±6.25)%,respectively,and twice preconditioning with sevoflurane 1,2,and 3 MAC increased the percentage to(38.53±4.36)%,(50.74±7.05)%and(55.86±6.23)%,respectively.The effect of duplicate preconditioning with sevoflurane 3 MAC was blocked by U0126[(16.23±4.62)%].Conclusion Sevoflurane preconditioning can induce neuroprotection against OGD injury in vitro,and preconditioning twice enhances this effect.Besides,the activation of extracellular signal展开更多
基金supported by the Nuclear Research and Development Program(NRF-2012M2A2A7012377,NRF-2015M2B2B1068627 and NRF-2015R1C1A2A01053041)of the National Research Foundation of Korea(NRF)funded by the Korean Government Ministry of Science,ICT&Future Planning
文摘Sodium butyrate is a histone deacetylase inhibitor that affects various types of brain damages.To investigate the effects of sodium butyrate on hippocampal dysfunction that occurs after whole-brain irradiation in animal models and the effect of sodium butyrate on radiation exposure-induced cognitive impairments,adult C57BL/6 mice were intraperitoneally treated with 0.6 g/kg sodium butyrate before exposure to 10 Gy cranial irradiation.Cognitive impairment in adult C57BL/6 mice was evaluated via an object recognition test 30 days after irradiation.We also detected the expression levels of neurogenic cell markers(doublecortin)and phosphorylated cAMP response element binding protein/brain-derived neurotrophic factor.Radiation-exposed mice had decreased cognitive function and hippocampal doublecortin and phosphorylated cAMP response element binding protein/brain-derived neurotrophic factor expression.Sodium butyrate pretreatment reversed these changes.These findings suggest that sodium butyrate can improve radiation-induced cognitive dysfunction through inhibiting the decrease in hippocampal phosphorylated cAMP response element binding protein/brain-derived neurotrophic factor expression.The study procedures were approved by the Institutional Animal Care and Use Committee of Korea Institute of Radiological Medical Sciences(approval No.KIRAMS16-0002)on December 30,2016.
文摘目的:探究天麻乙醇提物(ethanolic extracts of Gastrodia elata,EEGE)对慢性应激抑郁模型小鼠行为、海马神经元损伤及海马突触体内游离Ca^(2+)浓度的影响。方法:采用长期不可预见性中等强度应激造成小鼠抑郁模型。测定各组小鼠体重变化,Open-field法和糖水消耗实验测定各组小鼠的行为变化;Nissl染色法观察海马CA1,CA3区神经元形态及锥体细胞数目;以Fura-2负载及荧光分光光度计检测海马突触体内游离Ca^(2+)浓度。结果:与正常组比较,模型组小鼠模型组小鼠体呈现明显的抑郁样症状。EEGE低、高剂量组小鼠在第21天体重显著增加(P<0.001),其高剂量增加抑郁小鼠的爬格数(P<0.05);低、高剂量能明显增加抑郁小鼠的糖水消耗量(P<0.001),但无量效关系;低剂量组CA3区锥体细胞数目显著增多(P<0.001),且排列整齐、密集;高剂量组CA3区锥体细胞数目显著增多(P<0.05);低、高剂量能明显降低抑郁小鼠海马突触体内游离Ca^(2+)浓度(P<0.001)。结论:EEGE能改善小鼠的抑郁样行为;保护抑郁模型小鼠海马神经元损伤,可能与EEGE抑制海马神经细胞外Ca^(2+)内流,阻止Ca^(2+)超载相关。
基金supported by the Sci-Tech Development Project of Taian in Shandong,No.2016NS1058&2015NS2081the Sci-Tech Development Project of Linyi in Shandong,No.201515006
文摘Designing and/or searching for novel antioxidants against oxygen glucose effective strategy for the treatment of human isdlemic stroke. Selenium is deprivation (OGD)-induced oxidative damage represents an an essential trace dement, which is beneficial in the chemo- prevention and chemotherapy of cerebral ischemic stroke. The underlying mechanisms for its therapeutic effects, however, are not well documented. Selenocysteine (SeC) is a selenium-containing amino acid with neuroprotective potential. Studies have shown that SeC can reduce irradiation-induced DNA apoptosis by reducing DNA damage. In this study, the in vitro protective potential and mechanism of action of SeC against OGD-induced apoptosis and neurotoxicity were evaluated in HT22 mouse hippocampal neurons. We cultured HT22 cells in a glucose-free medium containing 2 mM Na2S402, which formed an OGD environment, for 90 minutes. Findings from MTT, flow cytometry and TUNEL staining showed obvious cytotoxicity and apoptosis in HT22 cells in the OGD condition. The activation of Caspa se-7 and Caspase-9 further revealed that OGD-induced apoptosis of HT22 cells was mainly achieved by triggering a mitochondrial-medi- ated pathway. Moreover, the OGD condition also induced serious DNA damage through the accumulation of reactive oxygen species and superoxide anions. However, SeC pre-treatment for 6 hours effectively inhibited OGD-induced cytotoxicity and apoptosis in HT22 cells by inhibiting reactive oxygen species-mediated oxidative damage. Our findings provide evidence that SeC has the potential to suppress OGD-induced oxidative damage and apoptosis in hippocampal neurons.
基金the National Natural Science Foundation of China(Grant No.82173803,81872847).
文摘Background:Hippocampal damage caused by status epilepticus(SE)can bring about cognitive decline and emotional disorders,which are common clinical comorbidities in patients with epilepsy.It is therefore imperative to develop a novel therapeutic strat-egy for protecting hippocampal damage after SE.Mitochondrial dysfunction is one of contributing factors in epilepsy.Given the therapeutic benefits of mitochondrial replenishment by exogenous mitochondria,we hypothesized that transplantation of mitochondria would be capable of ameliorating hippocampal damage following SE.Methods:Pilocarpine was used to induced SE in mice.SE-generated cognitive de-cline and emotional disorders were determined using novel object recognition,the tail suspension test,and the open field test.SE-induced hippocampal pathology was assessed by quantifying loss of neurons and activation of microglia and astrocytes.The metabolites underlying mitochondrial transplantation were determined using metabonomics.Results:The results showed that peripheral administration of isolated mitochon-dria could improve cognitive deficits and depressive and anxiety-like behaviors.Exogenous mitochondria blunted the production of reactive oxygen species,pro-liferation of microglia and astrocytes,and loss of neurons in the hippocampus.The metabonomic profiles showed that mitochondrial transplantation altered multiple metabolic pathways such as sphingolipid signaling pathway and carbon metabolism.Among potential affected metabolites,mitochondrial transplantation decreased levels of sphingolipid(d18:1/18:0)and methylmalonic acid,and elevated levels of D-fructose-1,6-bisphosphate.Conclusion:To the best of our knowledge,these findings provide the first direct ex-perimental evidence that artificial mitochondrial transplantation is capable of amelio-rating hippocampal damage following SE.These new findings support mitochondrial transplantation as a promising therapeutic strategy for epilepsy-associated psychiat-ric and cognitive disorders.
基金the National Natural Science Foundation of China, No. 39970651
文摘BACKGROUND: Previous studies have suggested that the hippocampus is one of the neurotoxic target sites for lead. However, the molecular mechanisms of action, including the effect of lead on cell-cycle arrest, remain poorly understood. OBJECTIVE: To investigate the effects of different lead concentrations on cell-cycle arrest, DNA damage, and cyclin D1 expression in primary cultured rat hippocampal neurons. DESIGN, TIME AND SETTING: A randomized, controlled, in vitro experiment was performed at the China Medical University between July 2008 and May 2009. MATERIALS: Antibodies specific to cyclin D1 and actin were synthesized and purified by Santa Cruz Biotechnology, USA. FACStar flow cytometer was purchased from Becton Dickinson, San Jose, California, USA. METHODS: Wistar rat hippocampal neurons were primary cultured for 7 days. Neurons in the control group were treated with 0.01 mol/L phosphate buffered saline. Neurons in the 0.2, 1.0, and 10 umol/L lead acetate groups were subjected to 0.2, 1.0, and 10 umol/L lead acetate. Subsequently hippocampal neurons in each group were cultured for 24 hours. MAIN OUTCOME MEASURES: The effects of lead on cell cycle were measured by flow cytometry, DNA damage was measured using the comet assay, and cyclin D1 expression was measured using Western blot analysis. RESULTS: Treatment of hippocampal neurons with 0.2 umol/L lead acetate did not significantly alter cell cycle phase distribution, i.e., sub-G1, S, G0/G1, G2/M, whereas treatment with 1.0 and 10 umol/L lead acetate significantly increased the percentage of S and sub-G1 phase cells (P 〈 0.05). Olive tail moment in all lead-treated groups and the percentage of DNA in the tail in 1.0 umol/L and 10 umol/L lead acetate groups were significantly greater compared with the control group (P 〈 0.05). In addition, the percentage of tail DNA was greater in the 0.2 umol/L lead acetate group compared with the control group (P 〉 0.05). Following incubation with 0.2, 1.0, and 10 umol/L lead acetate for 24
基金supported by theScience Foundation of Shihezi University,Xinjiang Province,China(No.RCZX200688)
文摘Objective Sevoflurane preconditioning has been demonstrated to reduce cerebral ischemia–reperfusion(IR) injury,but the underlying mechanisms have not been fully elucidated.Besides,different protocols would usually lead to different results.The objective of this study was to determine whether dual exposure to sevoflurane improves the effect of anesthetic preconditioning against oxygen and glucose deprivation(OGD)injury in vitro.Methods Rat hippocampal slices under normoxic conditions(95%O2/5%CO2)were pre-exposed to sevoflurane 1,2 and 3 minimum alveolar concentration (MAC)for 30 min,once or twice,with 15-min washout after each exposure.The slices were then subjected to 13-min OGD treatment(95%N2/5%CO2,glucose-free),followed by 30-min reoxygenation.The population spikes(PSs)were recorded in the CA1 region of rat hippocampus.The percentage of PS amplitude at the end of 30-min reoxygenation to that before OGD treatment was calculated,since it could indicate the recovery degree of neuronal function.In addition,to assess the role of mitogen-activated protein kinases(MAPKs)in preconditioning,U0126,an inhibitor of extracellular signal–regulated protein kinase(MEK-ERK1/2,ERK1/2 MAPK),and SB203580,an inhibitor of p38 MAPK,were separately added 10 min before sevoflurane exposure.Results Preconditioning once with sevoflurane 1,2,and 3 MAC increased the percentage of PS amplitude at the end of 30-min reoxygenation to that before OGD treatment,from(15.13±3.79)%(control)to(31.88±5.36)%, (44.00±5.01)%,and(49.50±6.25)%,respectively,and twice preconditioning with sevoflurane 1,2,and 3 MAC increased the percentage to(38.53±4.36)%,(50.74±7.05)%and(55.86±6.23)%,respectively.The effect of duplicate preconditioning with sevoflurane 3 MAC was blocked by U0126[(16.23±4.62)%].Conclusion Sevoflurane preconditioning can induce neuroprotection against OGD injury in vitro,and preconditioning twice enhances this effect.Besides,the activation of extracellular signal