采用低温固相燃烧法快速制备了一种具有{111}、{110}和{100}晶面的去顶角八面体LiNi_(0.08)Mn_(1.92)O_(4)(LNMO)正极材料,其高暴露{111}晶面可以减少充放电过程中Mn的溶解,面积相对较小的{110}和{100}晶面可增加Li^(+)快速扩散的通道....采用低温固相燃烧法快速制备了一种具有{111}、{110}和{100}晶面的去顶角八面体LiNi_(0.08)Mn_(1.92)O_(4)(LNMO)正极材料,其高暴露{111}晶面可以减少充放电过程中Mn的溶解,面积相对较小的{110}和{100}晶面可增加Li^(+)快速扩散的通道.测试结果表明,所合成的LNMO具有LiMn_(2)O_(4)特有的立方晶系结构,其颗粒尺寸为亚微米级.LNMO的高温电化学性能优异,在55℃,1和5 C的首次放电比容量分别为109.9和98.0 m Ah/g,分别循环300次后容量保持率为75.8%和80.5%;即使在55℃,10和15 C下分别循环1000次后仍具有48.4%和49.4%的容量保持率,而未掺杂的LiMn_(2)O_(4)于15 C循环1000次后容量损失高达98%.LNMO在55℃有较高的Li^(+)扩散系数(D=3.86×10^(-15)cm^(2)/s)和较小的电荷转移阻抗(循环前、后R_(ct)=158.0和279.8Ω)以及较低的表观活化能(E_(a)=17.63 k J/mol),说明Ni掺杂能够提高Li^(+)在尖晶石型LiMn_(2)O_(4)内的扩散速率及减小锂离子在脱嵌过程中的能垒,从而提高锂离子的扩散速率和倍率性能.对LNMO于55℃循环1000次后的极片进行X射线衍射(XRD)分析,发现LNMO电极材料的晶体结构基本保持不变,表明Ni掺杂提高了锰酸锂材料在55℃长循环过程中的晶体结构稳定性,有效抑制了Jahn-Teller效应及Mn的溶解,显著提升了其高温电化学性能.本工作为尖晶石LiMn_(2)O_(4)电极材料在高温方面的应用提供了借鉴.展开更多
采用高温固相法制备LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2正极材料,并用三氧化二铝(Al_2O_3)进行表面包覆改性。通过XRD、SEM对材料晶体结构、形貌进行分析,用恒流充放电和循环伏安等对材料进行测试。Al_2O_3包覆的LiNi_(1/3)Co_(...采用高温固相法制备LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2正极材料,并用三氧化二铝(Al_2O_3)进行表面包覆改性。通过XRD、SEM对材料晶体结构、形貌进行分析,用恒流充放电和循环伏安等对材料进行测试。Al_2O_3包覆的LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2正极材料具有典型的空间群,为R-3m的六方层状α-Na Fe O2结构。以0.2 C在2.5-4.3 V循环,Al_2O_3包覆量为1%的材料电化学性能最好,首次放电比容量可达145.7 m Ah/g,第30次循环的容量保持率为94.0%,比未包覆Al_2O_3材料在相同条件下的放电比容量提高了6.3%。展开更多
以乙酸盐为原料,采用高温固相法制备正极材料Li1.1(Ni1/3Co1/3Mn1/3)1-xCrxO2,采用X射线衍射仪(XRD)和扫描电子显微镜(SEM)对材料的结构和形貌进行表征,用恒电流充放电测试系统测试材料的电化学性能和循环性能。结果表明:合成的L...以乙酸盐为原料,采用高温固相法制备正极材料Li1.1(Ni1/3Co1/3Mn1/3)1-xCrxO2,采用X射线衍射仪(XRD)和扫描电子显微镜(SEM)对材料的结构和形貌进行表征,用恒电流充放电测试系统测试材料的电化学性能和循环性能。结果表明:合成的Li1.1(Ni1/3Co1/3Mn1/3)0.95Cr0.05O2样品具有典型的空间群为R-3m的六方层状α-Na Fe O2结构,且结构完整,阳离子混排程度较低。颗粒大小分布比较均匀,粒径大小在300~900 nm。该样品在0.1 C、2.6~4.6 V下的首次放电比容量为187.6 m Ah/g,并表现出良好的循环性能。适当的Cr掺杂可以提高Li Ni1/3Co1/3Mn1/3O2正极材料的晶体结构稳定性,使其具有良好的电化学性能。展开更多
文摘采用低温固相燃烧法快速制备了一种具有{111}、{110}和{100}晶面的去顶角八面体LiNi_(0.08)Mn_(1.92)O_(4)(LNMO)正极材料,其高暴露{111}晶面可以减少充放电过程中Mn的溶解,面积相对较小的{110}和{100}晶面可增加Li^(+)快速扩散的通道.测试结果表明,所合成的LNMO具有LiMn_(2)O_(4)特有的立方晶系结构,其颗粒尺寸为亚微米级.LNMO的高温电化学性能优异,在55℃,1和5 C的首次放电比容量分别为109.9和98.0 m Ah/g,分别循环300次后容量保持率为75.8%和80.5%;即使在55℃,10和15 C下分别循环1000次后仍具有48.4%和49.4%的容量保持率,而未掺杂的LiMn_(2)O_(4)于15 C循环1000次后容量损失高达98%.LNMO在55℃有较高的Li^(+)扩散系数(D=3.86×10^(-15)cm^(2)/s)和较小的电荷转移阻抗(循环前、后R_(ct)=158.0和279.8Ω)以及较低的表观活化能(E_(a)=17.63 k J/mol),说明Ni掺杂能够提高Li^(+)在尖晶石型LiMn_(2)O_(4)内的扩散速率及减小锂离子在脱嵌过程中的能垒,从而提高锂离子的扩散速率和倍率性能.对LNMO于55℃循环1000次后的极片进行X射线衍射(XRD)分析,发现LNMO电极材料的晶体结构基本保持不变,表明Ni掺杂提高了锰酸锂材料在55℃长循环过程中的晶体结构稳定性,有效抑制了Jahn-Teller效应及Mn的溶解,显著提升了其高温电化学性能.本工作为尖晶石LiMn_(2)O_(4)电极材料在高温方面的应用提供了借鉴.
文摘采用高温固相法制备LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2正极材料,并用三氧化二铝(Al_2O_3)进行表面包覆改性。通过XRD、SEM对材料晶体结构、形貌进行分析,用恒流充放电和循环伏安等对材料进行测试。Al_2O_3包覆的LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2正极材料具有典型的空间群,为R-3m的六方层状α-Na Fe O2结构。以0.2 C在2.5-4.3 V循环,Al_2O_3包覆量为1%的材料电化学性能最好,首次放电比容量可达145.7 m Ah/g,第30次循环的容量保持率为94.0%,比未包覆Al_2O_3材料在相同条件下的放电比容量提高了6.3%。
文摘以乙酸盐为原料,采用高温固相法制备正极材料Li1.1(Ni1/3Co1/3Mn1/3)1-xCrxO2,采用X射线衍射仪(XRD)和扫描电子显微镜(SEM)对材料的结构和形貌进行表征,用恒电流充放电测试系统测试材料的电化学性能和循环性能。结果表明:合成的Li1.1(Ni1/3Co1/3Mn1/3)0.95Cr0.05O2样品具有典型的空间群为R-3m的六方层状α-Na Fe O2结构,且结构完整,阳离子混排程度较低。颗粒大小分布比较均匀,粒径大小在300~900 nm。该样品在0.1 C、2.6~4.6 V下的首次放电比容量为187.6 m Ah/g,并表现出良好的循环性能。适当的Cr掺杂可以提高Li Ni1/3Co1/3Mn1/3O2正极材料的晶体结构稳定性,使其具有良好的电化学性能。