本文对高重频窄脉宽多波长激光器的可靠性进行了分析及验证,建立了高重频窄脉宽多波长激光器的框图法模型。在初始设计阶段开展激光器的可靠性分析,定量计算了激光器各单元的可靠性结果,包括失效率λ和平均无故障工作时间(Mean Time Bet...本文对高重频窄脉宽多波长激光器的可靠性进行了分析及验证,建立了高重频窄脉宽多波长激光器的框图法模型。在初始设计阶段开展激光器的可靠性分析,定量计算了激光器各单元的可靠性结果,包括失效率λ和平均无故障工作时间(Mean Time Between Failure,MTBF),预计激光器整机的无故障工作时间为1798.8 h。为满足激光器的设计指标要求,通过选用高品质晶体、半导体激光器的Ⅰ级降额设计和电源控制的冗余设计,实现激光器的可靠性优化。经优化设计后,激光器整机的无故障工作时间达2260.9 h。搭建激光器整机对可靠性优化设计结果进行验证,验证结果表明:激光器无故障工作时间可达2400 h。展开更多
A novel approach, which can handle ambiguous data from weak targets, is proposed within the randomized Hough transform track-before-detect(RHT-TBD) framework. The main idea is that, without the pre-detection and ambig...A novel approach, which can handle ambiguous data from weak targets, is proposed within the randomized Hough transform track-before-detect(RHT-TBD) framework. The main idea is that, without the pre-detection and ambiguity resolution step at each time step, the ambiguous measurements are mapped by the multiple hypothesis ranging(MHR) procedure. In this way, all the information, based on the relativity in time and pulse repetition frequency(PRF) domains, can be gathered among different PRFs and integrated over time via a batch procedure. The final step is to perform the RHT with all the extended measurements, and the ambiguous data is unfolded while the detection decision is confirmed at the end of the processing chain.Unlike classic methods, the new approach resolves the problem of range ambiguity and detects the true track for targets. Finally, its application is illustrated to analyze and compare the performance between the proposed approach and the existing approach. Simulation results exhibit the effectiveness of this approach.展开更多
A laser frequency comb with several tens GHz level is demonstrated,based on a Yb-doped femtosecond fiber laser and two low-finesse Fabry-Perot cavities(FPCs) in series.The original 250-MHz mode-line-spacing of the s...A laser frequency comb with several tens GHz level is demonstrated,based on a Yb-doped femtosecond fiber laser and two low-finesse Fabry-Perot cavities(FPCs) in series.The original 250-MHz mode-line-spacing of the source comb is filtered to 4.75 GHz and 23.75 GHz,respectively.According to the multi-beam interferences theory of FPC,the side-mode suppression rate of FPC schemes is in good agreement with our own theoretical results from 27 dB of a single FPC to43 dB of paired FPCs.To maintain long-term stable operation and determine the absolute frequency mode number in the23.75-GHz comb,the Pound-Drever-Hall(PDH) locking technology is utilized.Such stable tens GHz frequency combs have important applications in calibrating astronomical spectrographs with high resolution.展开更多
文摘本文对高重频窄脉宽多波长激光器的可靠性进行了分析及验证,建立了高重频窄脉宽多波长激光器的框图法模型。在初始设计阶段开展激光器的可靠性分析,定量计算了激光器各单元的可靠性结果,包括失效率λ和平均无故障工作时间(Mean Time Between Failure,MTBF),预计激光器整机的无故障工作时间为1798.8 h。为满足激光器的设计指标要求,通过选用高品质晶体、半导体激光器的Ⅰ级降额设计和电源控制的冗余设计,实现激光器的可靠性优化。经优化设计后,激光器整机的无故障工作时间达2260.9 h。搭建激光器整机对可靠性优化设计结果进行验证,验证结果表明:激光器无故障工作时间可达2400 h。
基金supported by National Natural Science Foundation of China (Grant Nos. 61179018, 61372027, 61501489)Special Foundation for Mountain Tai Scholars
文摘A novel approach, which can handle ambiguous data from weak targets, is proposed within the randomized Hough transform track-before-detect(RHT-TBD) framework. The main idea is that, without the pre-detection and ambiguity resolution step at each time step, the ambiguous measurements are mapped by the multiple hypothesis ranging(MHR) procedure. In this way, all the information, based on the relativity in time and pulse repetition frequency(PRF) domains, can be gathered among different PRFs and integrated over time via a batch procedure. The final step is to perform the RHT with all the extended measurements, and the ambiguous data is unfolded while the detection decision is confirmed at the end of the processing chain.Unlike classic methods, the new approach resolves the problem of range ambiguity and detects the true track for targets. Finally, its application is illustrated to analyze and compare the performance between the proposed approach and the existing approach. Simulation results exhibit the effectiveness of this approach.
基金supported by the National Basic Research Program of China(Grant No.2012CB821304)the National Natural Science Foundation of China(Grant Nos.11078022 and 61378040)
文摘A laser frequency comb with several tens GHz level is demonstrated,based on a Yb-doped femtosecond fiber laser and two low-finesse Fabry-Perot cavities(FPCs) in series.The original 250-MHz mode-line-spacing of the source comb is filtered to 4.75 GHz and 23.75 GHz,respectively.According to the multi-beam interferences theory of FPC,the side-mode suppression rate of FPC schemes is in good agreement with our own theoretical results from 27 dB of a single FPC to43 dB of paired FPCs.To maintain long-term stable operation and determine the absolute frequency mode number in the23.75-GHz comb,the Pound-Drever-Hall(PDH) locking technology is utilized.Such stable tens GHz frequency combs have important applications in calibrating astronomical spectrographs with high resolution.