期刊文献+
共找到91篇文章
< 1 2 5 >
每页显示 20 50 100
High-Order Models of Nonlinear and Dispersive Wave in Water of Varying Depth with Arbitrary Sloping Bottom 被引量:26
1
作者 Hong Guangwen Professor, Coastal and Ocean Engineering Research Institute, Hohai University, Nanjing 210024, P. R. China. 《China Ocean Engineering》 SCIE EI 1997年第3期243-260,共18页
High-order models with a dissipative term for nonlinear and dispersive wave in water of varying depth with an arbitrary sloping bottom are presented in this article. First, the formal derivations to any high order of ... High-order models with a dissipative term for nonlinear and dispersive wave in water of varying depth with an arbitrary sloping bottom are presented in this article. First, the formal derivations to any high order of mu(= h/lambda, depth to deep-water wave length ratio) and epsilon(= a/h, wave amplitude to depth ratio) for velocity potential, particle velocity vector, pressure and the Boussinesq-type equations for surface elevation eta and horizontal velocity vector (U) over right arrow at any given level in water are given. Then, the exact explicit expressions to the fourth order of mu are derived. Finally, the linear solutions of eta, (U) over right arrow, C (phase-celerity) and C-g (group velocity) for a constant water depth are obtained. Compared with the Airy theory, excellent results can be found even for a water depth as large as the wave legnth. The present high-order models are applicable to nonlinear regular and irregular waves in water of any varying depth (from shallow to deep) and bottom slope (from mild to steep). 展开更多
关键词 nonlinear wave dispersive wave high order models Boussinesq-type equations varying depth arbitrary sloping bottom
下载PDF
细长机翼摇滚的数值模拟及物理特性分析 被引量:10
2
作者 刘伟 张涵信 《力学学报》 EI CSCD 北大核心 2005年第4期385-392,共8页
耦合三维非定常Navier-Stokes方程与Euler刚体运动方程数值研究80°尖前缘后掠三角翼的机翼摇滚问题.采用高精度的WNND(weightednon-oscillatory,containingnofreeparametersanddissipative)格式离散流动控制方程、采用时间二阶精... 耦合三维非定常Navier-Stokes方程与Euler刚体运动方程数值研究80°尖前缘后掠三角翼的机翼摇滚问题.采用高精度的WNND(weightednon-oscillatory,containingnofreeparametersanddissipative)格式离散流动控制方程、采用时间二阶精度单边差分离散刚体运动方程数值模拟了马赫数为0.35,攻角为10°,22°,30°下三角翼受扰后的自由滚转运动.结果表明:22°攻角附近为所给三角翼出现横向不稳定的摇滚运动的临界攻角;当攻角小于临界值时,受扰后的机翼滚转运动收敛,而当攻角大于临界值时,受扰后的机翼滚转运动发散并形成极限环形式的机翼摇滚. 展开更多
关键词 机翼摇滚 细长三角翼 数值模拟 高阶格式 N-S方程
下载PDF
稀疏非结构网格上的亚声速流高精度数值模拟 被引量:10
3
作者 吕宏强 伍贻兆 +1 位作者 周春华 田书玲 《航空学报》 EI CAS CSCD 北大核心 2009年第2期200-204,共5页
采用高阶间断有限元法在非结构网格上数值求解二维亚声速Euler方程。数值结果表明,尽管采用的非结构网格非常稀疏,但通过采用真实曲线物面边界和高阶的基函数仍可得到高精度的数值解。另外,对于超低速情况,方程无需经过任何特殊处理就... 采用高阶间断有限元法在非结构网格上数值求解二维亚声速Euler方程。数值结果表明,尽管采用的非结构网格非常稀疏,但通过采用真实曲线物面边界和高阶的基函数仍可得到高精度的数值解。另外,对于超低速情况,方程无需经过任何特殊处理就可以得到收敛的数值解。由于采用牛顿-一般最小余量法(Newton-GMRES)时通常需要较好的初始值,本文设计了一种阶谱循环过程来提高数值求解的鲁棒性。 展开更多
关键词 间断有限元 高阶格式 EULER方程 稀疏网格 Newton-GMRES
原文传递
High-Order Soliton Solutions and Hybrid Behavior for the (2 + 1)-Dimensional Konopelchenko-Dubrovsky Equations
4
作者 Xingying Li Yin Ji 《Journal of Applied Mathematics and Physics》 2024年第7期2452-2466,共15页
In this paper, the evolutionary behavior of N-solitons for a (2 + 1)-dimensional Konopelchenko-Dubrovsky equations is studied by using the Hirota bilinear method and the long wave limit method. Based on the N-soliton ... In this paper, the evolutionary behavior of N-solitons for a (2 + 1)-dimensional Konopelchenko-Dubrovsky equations is studied by using the Hirota bilinear method and the long wave limit method. Based on the N-soliton solution, we first study the evolution from N-soliton to T-order (T=1,2) breather wave solutions via the paired-complexification of parameters, and then we get the N-order rational solutions, M-order (M=1,2) lump solutions, and the hybrid behavior between a variety of different types of solitons combined with the parameter limit technique and the paired-complexification of parameters. Meanwhile, we also provide a large number of three-dimensional figures in order to better show the degeneration of the N-soliton and the interaction behavior between different N-solitons. 展开更多
关键词 Konopelchenko-Dubrovsky equations Hirota Bilinear Method M-order Lump Solutions high-order Hybrid Solutions Interaction Behavior
下载PDF
基于高阶物面近似的自适应间断有限元法欧拉方程数值模拟 被引量:5
5
作者 孙强 吕宏强 伍贻兆 《空气动力学学报》 CSCD 北大核心 2015年第4期446-453,共8页
将高阶间断有限元与网格自适应相结合,于非结构网格上求解二维Euler方程。将数值解多项式的高阶项贡献用人工粘性项系数的形式进行量化,网格自适应过程中以人工粘性项系数作为网格自适应的指示器。在系数达到设定的上限阀值的区域进行... 将高阶间断有限元与网格自适应相结合,于非结构网格上求解二维Euler方程。将数值解多项式的高阶项贡献用人工粘性项系数的形式进行量化,网格自适应过程中以人工粘性项系数作为网格自适应的指示器。在系数达到设定的上限阀值的区域进行网格加密,在系数达到设定的下限阀值的区域将迭代过程中加密过的网格稀疏以减少网格量。所有自适应均在高阶曲线逼近真实物面的基础上进行,以保证数值结果的精度。典型数值算例结果与实验结果进行了对比,表明采用该自适应间断有限元法可以保证以尽可能小的计算量得到高精度结果。 展开更多
关键词 高阶间断有限元 自适应方法 EULER方程 人工粘性 物面高阶近似
下载PDF
Excel中用Newton迭代法求解土的最优含水率和最大干密度的方法 被引量:5
6
作者 彭永凯 《铁路计算机应用》 2014年第6期67-68,共2页
在Excel中先根据试验数据自动生成击实曲线、趋势线拟合公式,然后用Newton迭代法求解高次方程,得出最优含水率和最大干密度。
关键词 击实试验 EXCEL 高次方程 NEWTON迭代法
下载PDF
高阶精度方法下的湍流生成项对低速流动数值模拟的影响研究 被引量:5
7
作者 王运涛 孙岩 +1 位作者 李松 李伟 《空气动力学学报》 CSCD 北大核心 2015年第3期325-329 352,352,共6页
基于雷诺平均的Navier-Stokes方程和结构网格技术,采用五阶空间离散精度的WCNS格式,开展了SST两方程模型不同湍流生成项对低速流动数值模拟的计算分析。主要目的是为高阶精度格式在复杂外形上的应用提供技术支撑。计算模型包含了低速NLR... 基于雷诺平均的Navier-Stokes方程和结构网格技术,采用五阶空间离散精度的WCNS格式,开展了SST两方程模型不同湍流生成项对低速流动数值模拟的计算分析。主要目的是为高阶精度格式在复杂外形上的应用提供技术支撑。计算模型包含了低速NLR7301两段翼型和Trap Wing高升力构型,研究内容主要包括不同湍流生成项对收敛历程、边界层湍流粘性系数分布、边界层速度分布、压力系数分布、气动特性的影响。在与试验数据对比的基础上,计算结果表明:对于低速二维流动,不同湍流生成项对收敛历程有比较明显的影响,对附面层湍流粘性系数分布和速度型影响不明显,不同湍流生成项主要影响主翼前缘的吸力峰值,进而影响升力系数和压差阻力系统;对于低速三维流动,不同湍流生成项对低速流动的收敛特性影响不明显,对翼梢涡的模拟精度有比较明显的影响,进而影响翼梢站位的压力分布和总体气动特性。 展开更多
关键词 湍流生成项 低速流动 高精度计算 WCNS格式 RANS方程 SST湍流模型
下载PDF
A Well-Balanced Positivity-Preserving Quasi-Lagrange Moving Mesh DG Method for the Shallow Water Equations 被引量:3
8
作者 Min Zhang Weizhang Huang Jianxian Qiu 《Communications in Computational Physics》 SCIE 2022年第1期94-130,共37页
A high-order, well-balanced, positivity-preserving quasi-Lagrange movingmesh DG method is presented for the shallow water equations with non-flat bottomtopography. The well-balance property is crucial to the ability o... A high-order, well-balanced, positivity-preserving quasi-Lagrange movingmesh DG method is presented for the shallow water equations with non-flat bottomtopography. The well-balance property is crucial to the ability of a scheme to simulate perturbation waves over the lake-at-rest steady state such as waves on a lake ortsunami waves in the deep ocean. The method combines a quasi-Lagrange movingmesh DG method, a hydrostatic reconstruction technique, and a change of unknownvariables. The strategies in the use of slope limiting, positivity-preservation limiting,and change of variables to ensure the well-balance and positivity-preserving properties are discussed. Compared to rezoning-type methods, the current method treatsmesh movement continuously in time and has the advantages that it does not need tointerpolate flow variables from the old mesh to the new one and places no constraintfor the choice of a update scheme for the bottom topography on the new mesh. A selection of one- and two-dimensional examples are presented to demonstrate the wellbalance property, positivity preservation, and high-order accuracy of the method andits ability to adapt the mesh according to features in the flow and bottom topography. 展开更多
关键词 Well-balance positivity-preserving high-order accuracy quasi-Lagrange moving mesh DG method shallow water equations
原文传递
消力池池深的简捷计算法 被引量:4
9
作者 李华 滕凯 《水利与建筑工程学报》 2015年第4期220-223,共4页
计算消力池深需联立求解高次方程,常规的数学方法不能直接获得。目前的试算法、迭代法及近似算法计算繁琐、精度不高,而智能算法又不便基层人员应用。通过对池深水力计算相关方程式的整理变换,获得了无量纲求解方程,采用优化拟合的方法... 计算消力池深需联立求解高次方程,常规的数学方法不能直接获得。目前的试算法、迭代法及近似算法计算繁琐、精度不高,而智能算法又不便基层人员应用。通过对池深水力计算相关方程式的整理变换,获得了无量纲求解方程,采用优化拟合的方法,通过对无量纲求解方程的拟合替代,在工程实用范围内,获得了计算简捷、成果精度满足工程设计要求的简化计算公式,具有一定的实际推广意义。 展开更多
关键词 消力池深 高次方程组 优化拟合 简捷计算
下载PDF
高阶偏微分方程与概率方法 被引量:2
10
作者 赵学雷 王梓坤 《数学进展》 CSCD 北大核心 1996年第5期414-422,共9页
二阶偏微分方程与扩散过程的联系是概率界众所周知的.前者为后者提供了分析依据,后者为前者的解给出了概率表示.如何把这种联系推广到高阶偏微分方程的情形,是很多概率学家近十几年来一直关心的问题.本文试就此问题介绍有关的情况... 二阶偏微分方程与扩散过程的联系是概率界众所周知的.前者为后者提供了分析依据,后者为前者的解给出了概率表示.如何把这种联系推广到高阶偏微分方程的情形,是很多概率学家近十几年来一直关心的问题.本文试就此问题介绍有关的情况及一些最新进展,从中不难发现很多重要问题有待解决,期望能够引起同行的注意. 展开更多
关键词 偏微分方程 概率方法 扩散过程 维纳测度
下载PDF
A NUMERICAL STUDY FOR THE PERFORMANCE OF THE WENO SCHEMES BASED ON DIFFERENT NUMERICAL FLUXES FOR THE SHALLOW WATER EQUATIONS 被引量:2
11
作者 Changna Lu Jianxian Qiu Ruyun Wang 《Journal of Computational Mathematics》 SCIE CSCD 2010年第6期807-825,共19页
In this paper we investigate the performance of the weighted essential non-oscillatory (WENO) methods based on different numerical fluxes, with the objective of obtaining better performance for the shallow water equ... In this paper we investigate the performance of the weighted essential non-oscillatory (WENO) methods based on different numerical fluxes, with the objective of obtaining better performance for the shallow water equations by choosing suitable numerical fluxes. We consider six numerical fluxes, i.e., Lax-Friedrichs, local Lax-Friedrichs, Engquist-Osher, Harten-Lax-van Leer, HLLC and the first-order centered fluxes, with the WENO finite volume method and TVD Runge-Kutta time discretization for the shallow water equations. The detailed numerical study is performed for both one-dimensional and two-dimensional shallow water equations by addressing the property, and resolution of discontinuities. issues of CPU cost, accuracy, non-oscillatory 展开更多
关键词 Numerical flux WENO finite volume scheme Shallow water equations high order accuracy Approximate Riemann solver Runge-Kutta time discretization.
原文传递
双曲型守恒律的一种高精度TVD差分格式 被引量:3
12
作者 郑华盛 赵宁 《计算物理》 CSCD 北大核心 2005年第1期13-18,共6页
 构造了一维双曲型守恒律方程的一个高精度高分辨率的守恒型TVD差分格式.其主要思想是:首先将计算区域划分为互不重叠的小单元,且每个小单元再根据希望的精度阶数分为细小单元;其次,根据流动方向将通量分裂为正、负通量,并通过小单元...  构造了一维双曲型守恒律方程的一个高精度高分辨率的守恒型TVD差分格式.其主要思想是:首先将计算区域划分为互不重叠的小单元,且每个小单元再根据希望的精度阶数分为细小单元;其次,根据流动方向将通量分裂为正、负通量,并通过小单元上的高阶插值逼近得到了细小单元边界上的正、负数值通量,为避免由高阶插值产生的数值振荡,进一步根据流向对其进行TVD校正;再利用高阶Runge KuttaTVD离散方法对时间进行离散,得到了高阶全离散方法.进一步推广到一维方程组情形.最后对一维欧拉方程组计算了几个算例. 展开更多
关键词 高阶 双曲型 守恒律 TVD差分格式 一维 欧拉方程组 全离散 单元 负数 离散方法
下载PDF
高阶精度方法下的湍流生成项对跨声速流动数值模拟的影响研究 被引量:3
13
作者 王运涛 孙岩 +1 位作者 李松 李伟 《空气动力学学报》 CSCD 北大核心 2015年第1期25-30,共6页
利用五阶空间离散精度的WCNS格式和多块结构网格技术,通过求解雷诺平均NS方程,开展了SST两方程模型不同湍流生成项组合方式对跨声速流动数值模拟影响的计算分析。研究的主要目的是为高阶精度格式在复杂外形上的工程应用提供技术支撑。... 利用五阶空间离散精度的WCNS格式和多块结构网格技术,通过求解雷诺平均NS方程,开展了SST两方程模型不同湍流生成项组合方式对跨声速流动数值模拟影响的计算分析。研究的主要目的是为高阶精度格式在复杂外形上的工程应用提供技术支撑。计算模型采用了RAE2822超临界翼型和DLR-F6翼身组合体构型。研究内容主要包括不同湍流生成项对残差收敛历程、边界层湍流粘性系数分布、边界层速度分布、压力系数分布以及模型整体气动力特性的影响。不同湍流生成项组合方式的流场计算结果还与风洞试验数据进行了对比。研究结果表明:对于小迎角不存在明显分离的跨声速流动,不同湍流生成项对流场的高精度计算结果的影响很小,可以不用考虑。 展开更多
关键词 湍流生成项 跨声速流动 高精度计算 WCNS格式 RANS方程 SST湍流模型
下载PDF
High-Order Iterative Methods Repeating Roots a Constructive Recapitulation
14
作者 Isaac Fried 《Applied Mathematics》 2022年第2期131-146,共16页
This paper considers practical, high-order methods for the iterative location of the roots of nonlinear equations, one at a time. Special attention is being paid to algorithms also applicable to multiple roots of init... This paper considers practical, high-order methods for the iterative location of the roots of nonlinear equations, one at a time. Special attention is being paid to algorithms also applicable to multiple roots of initially known and unknown multiplicity. Efficient methods are presented in this note for the evaluation of the multiplicity index of the root being sought. Also reviewed here are super-linear and super-cubic methods that converge contrarily or alternatingly, enabling us, not only to approach the root briskly and confidently but also to actually bound and bracket it as we progress. 展开更多
关键词 Roots of Nonlinear equations Multiple Roots Multiplicity Index of a Root Estimation of the Multiplicity Index of a Root high-order Iterative Methods Root Bracketing Alternatingly Converging Methods Contrarily Converging Methods
下载PDF
Implicit discontinuous Galerkin method on agglomerated high-order grids for 3D simulations 被引量:1
15
作者 Qin Wanglong Lyu Hongqiang +2 位作者 Wu Yizhao Zhou Shijie Chen Zhengwu 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2016年第6期1496-1505,共10页
High quality of geometry representation is regarded essential for high-order methods to maintain their high-order accuracy. An agglomerated high-order mesh generating method is investigated in combination with discont... High quality of geometry representation is regarded essential for high-order methods to maintain their high-order accuracy. An agglomerated high-order mesh generating method is investigated in combination with discontinuous Galerkin(DG) method for solving the 3D compressible Euler and Navier-Stokes equations. In this method, a fine linear mesh is first generated by standard commercial mesh generation tools. By taking advantage of an agglomeration method, a quadratic high-order mesh is quickly obtained, which is coarse but provides a high-quality geometry representation, thus very suitable for high-order computations. High-order discretizations are performed on the obtained grids with DG method and the discretized system is treated fully implicitly to obtain steady state solutions. Numerical experiments on several flow problems indicate that the agglomerated high-order mesh works well with DG method in dealing with flow problems of curved geometries. It is also found that with a fully implicit discretized system and a p-sequencing method, the DG method can achieve convergence state within several time steps which shows significant efficiency improvements compared to its explicit counterparts. 展开更多
关键词 AGGLOMERATION Discontinuous Galerkin(DG) high-order Implicit scheme Navier-Stokes equations
原文传递
HIGH ORDER COMPACT MULTISYMPLECTIC SCHEME FOR COUPLED NONLINEAR SCHRODINGER-KDV EQUATIONS 被引量:1
16
作者 Lan Wang Yushun Wang 《Journal of Computational Mathematics》 SCIE CSCD 2018年第4期591-604,共14页
In this paper, a novel multisymplectic scheme is proposed for the coupled nonlinear Schrodinger-KdV (CNLS-KdV) equations. The CNLS-KdV equations are rewritten into the multisymplectic Hamiltonian form by introducing... In this paper, a novel multisymplectic scheme is proposed for the coupled nonlinear Schrodinger-KdV (CNLS-KdV) equations. The CNLS-KdV equations are rewritten into the multisymplectic Hamiltonian form by introducing some canonical momenta. To simulate the problem efficiently, the CNLS-KdV equations are approximated by a high order compact method in space which preserves N semi-discrete multisymplectic conservation laws. We then discretize the semi-discrete system by using a symplectic midpoint scheme in time. Thus, a full-discrete multisymplectic scheme is obtained for the CNLS-KdV equations. The conservation laws of the full-discrete scheme are analyzed. Some numerical experiments are presented to further verify the convergence and conservation laws of the new scheme. 展开更多
关键词 Schrodinger-KdV equations high order compact method Conservation law Multisymplectic scheme
原文传递
A deep learning method for solving high-order nonlinear soliton equations 被引量:1
17
作者 Shikun Cui Zhen Wang +2 位作者 Jiaqi Han Xinyu Cui Qicheng Meng 《Communications in Theoretical Physics》 SCIE CAS CSCD 2022年第7期57-69,共13页
We propose an effective scheme of the deep learning method for high-order nonlinear soliton equations and explore the influence of activation functions on the calculation results for higherorder nonlinear soliton equa... We propose an effective scheme of the deep learning method for high-order nonlinear soliton equations and explore the influence of activation functions on the calculation results for higherorder nonlinear soliton equations. The physics-informed neural networks approximate the solution of the equation under the conditions of differential operator, initial condition and boundary condition. We apply this method to high-order nonlinear soliton equations, and verify its efficiency by solving the fourth-order Boussinesq equation and the fifth-order Korteweg–de Vries equation. The results show that the deep learning method can be used to solve high-order nonlinear soliton equations and reveal the interaction between solitons. 展开更多
关键词 deep learning method physics-informed neural networks high-order nonlinear soliton equations interaction between solitons the numerical driven solution
原文传递
High order semi-implicit weighted compact nonlinear scheme for the all-Mach isentropic Euler system 被引量:2
18
作者 Yanqun Jiang Xun Chen +2 位作者 Xu Zhang Tao Xiong Shuguang Zhou 《Advances in Aerodynamics》 2020年第1期555-578,共24页
The computation of compressible flows at all Mach numbers is a very challenging problem.An efficient numerical method for solving this problem needs to have shock-capturing capability in the high Mach number regime,wh... The computation of compressible flows at all Mach numbers is a very challenging problem.An efficient numerical method for solving this problem needs to have shock-capturing capability in the high Mach number regime,while it can deal with stiffness and accuracy in the low Mach number regime.This paper designs a high order semi-implicit weighted compact nonlinear scheme(WCNS)for the all-Mach isentropic Euler system of compressible gas dynamics.To avoid severe Courant-Friedrichs-Levy(CFL)restrictions for low Mach flows,the nonlinear fluxes in the Euler equations are split into stiff and non-stiff components.A third-order implicit-explicit(IMEX)method is used for the time discretization of the split components and a fifth-order WCNS is used for the spatial discretization of flux derivatives.The high order IMEX method is asymptotic preserving and asymptotically accurate in the zero Mach number limit.One-and two-dimensional numerical examples in both compressible and incompressible regimes are given to demonstrate the advantages of the designed IMEX WCNS. 展开更多
关键词 high order scheme IMEX time discretization WCNS Asymptotic-preserving property Low Mach number Isentropic Euler equations
原文传递
非线性双曲型守恒律的高精度MmB差分格式 被引量:2
19
作者 郑华盛 赵宁 《计算力学学报》 CAS CSCD 北大核心 2006年第2期218-222,共5页
构造了一维非线性双曲型守恒律方程的一个高精度、高分辨率的广义G odunov型差分格式。其构造思想是:首先将计算区间划分为若干个互不相交的小区间,再根据精度要求等分小区间,通过各细小区间上的单元平均状态变量,重构各等分小区间交界... 构造了一维非线性双曲型守恒律方程的一个高精度、高分辨率的广义G odunov型差分格式。其构造思想是:首先将计算区间划分为若干个互不相交的小区间,再根据精度要求等分小区间,通过各细小区间上的单元平均状态变量,重构各等分小区间交界面上的状态变量,并加以校正;其次,利用近似R iem ann解算子求解细小区间交界面上的数值通量,并结合高阶R unge-K u tta TVD方法进行时间离散,得到了高精度的全离散方法。证明了该格式的Mm B特性。然后,将格式推广到一、二维双曲型守恒方程组情形。最后给出了一、二维Eu ler方程组的几个典型的数值算例,验证了格式的高效性。 展开更多
关键词 双曲型守恒律 高阶精度 MMB差分格式 EULER方程组
下载PDF
On Arbitrary-Lagrangian-Eulerian One-Step WENO Schemes for Stiff Hyperbolic Balance Laws 被引量:1
20
作者 Michael Dumbser Ariunaa Uuriintsetseg Olindo Zanotti 《Communications in Computational Physics》 SCIE 2013年第7期301-327,共27页
In this article we present a new family of high order accurate Arbitrary Lagrangian-Eulerian one-step WENO finite volume schemes for the solution of stiff hyperbolic balance laws.High order accuracy in space is obtain... In this article we present a new family of high order accurate Arbitrary Lagrangian-Eulerian one-step WENO finite volume schemes for the solution of stiff hyperbolic balance laws.High order accuracy in space is obtained with a standard WENO reconstruction algorithm and high order in time is obtained using the local space-time discontinuous Galerkinmethod recently proposed in[20].In the Lagrangian framework considered here,the local space-time DG predictor is based on a weak formulation of the governing PDE on a moving space-time element.For the spacetime basis and test functions we use Lagrange interpolation polynomials defined by tensor-product Gauss-Legendre quadrature points.The moving space-time elements are mapped to a reference element using an isoparametric approach,i.e.the spacetime mapping is defined by the same basis functions as the weak solution of the PDE.We show some computational examples in one space-dimension for non-stiff and for stiff balance laws,in particular for the Euler equations of compressible gas dynamics,for the resistive relativistic MHD equations,and for the relativistic radiation hydrodynamics equations.Numerical convergence results are presented for the stiff case up to sixth order of accuracy in space and time and for the non-stiff case up to eighth order of accuracy in space and time. 展开更多
关键词 Arbitrary Lagrangian-Eulerian finite volume scheme moving mesh high order WENOreconstruction local space-timeDG predictor moving isoparametric space-time elements stiff relaxation source terms Euler equations resistive relativistic MHD equations relativistic radiation hydrodynamics
原文传递
上一页 1 2 5 下一页 到第
使用帮助 返回顶部