本文通过对传统粒子群算法(PSO)的分析,在GPU(Graphic Process Unit)上设计了基于一般反向学习策略的粒子群算法,并用于求解大规模优化问题.主要思想是通过一般反向学习策略转化当前解空间,提高算法找到最优解的几率,同时使用GPU大量线...本文通过对传统粒子群算法(PSO)的分析,在GPU(Graphic Process Unit)上设计了基于一般反向学习策略的粒子群算法,并用于求解大规模优化问题.主要思想是通过一般反向学习策略转化当前解空间,提高算法找到最优解的几率,同时使用GPU大量线程并行来加速收敛速度.对比数值实验表明,对于求解大规模高维的优化问题,本文算法比其他智能算法具有更好的精度和更快的收敛速度.展开更多
文摘本文通过对传统粒子群算法(PSO)的分析,在GPU(Graphic Process Unit)上设计了基于一般反向学习策略的粒子群算法,并用于求解大规模优化问题.主要思想是通过一般反向学习策略转化当前解空间,提高算法找到最优解的几率,同时使用GPU大量线程并行来加速收敛速度.对比数值实验表明,对于求解大规模高维的优化问题,本文算法比其他智能算法具有更好的精度和更快的收敛速度.
文摘天线结构日趋复杂,设计自由度不断提高,经典优化算法需要对大量的参数组合进行仿真试探后才能得到最优结果,使得天线的高维优化设计效率普遍较低.针对这一问题,将代理模型与进化算法相结合,提出基于Kriging模型的差分进化算法(Kriging based Differential Evolution Algorithm,KDEA).算法以Kriging模型部分代替电磁仿真,预测差分进化后个体的响应和不确定性;以进化前后种群的构成和筛选来调节搜索的广度和深度.结果显示,利用此方法优化一个9变量双层贴片天线的阻抗带宽及主瓣增益,相比同类优化算法,所需电磁仿真次数可以减少70%以上.