User-generated content(UGC) such as blogs and twitters are exploding in modern Internet services. In such systems, recommender systems are needed to help people filter vast amount of UGC generated by other users. Howe...User-generated content(UGC) such as blogs and twitters are exploding in modern Internet services. In such systems, recommender systems are needed to help people filter vast amount of UGC generated by other users. However, traditional recommendation models do not use user authorship of items. In this paper, we show that with this additional information, we can significantly improve the performance of recommendations. A generative model that combines hierarchical topic modeling and matrix factorization is proposed. Empirical results show that our model outperforms other state-of-the-art models, and can provide interpretable topic structures for users and items. Furthermore, since user interests can be inferred from their productions, recommendations can be made for users that do not have any ratings to solve the cold-start problem.展开更多
基金Project supported by the Monitoring Statistics Project on Agricultural and Rural Resources,MOA,Chinathe Innovative Talents Project,MOA,Chinathe Science and Technology Innovation Project Fund of Chinese Academy of Agricultural Sciences(No.CAAS-ASTIP-2015-AI I-02)
文摘User-generated content(UGC) such as blogs and twitters are exploding in modern Internet services. In such systems, recommender systems are needed to help people filter vast amount of UGC generated by other users. However, traditional recommendation models do not use user authorship of items. In this paper, we show that with this additional information, we can significantly improve the performance of recommendations. A generative model that combines hierarchical topic modeling and matrix factorization is proposed. Empirical results show that our model outperforms other state-of-the-art models, and can provide interpretable topic structures for users and items. Furthermore, since user interests can be inferred from their productions, recommendations can be made for users that do not have any ratings to solve the cold-start problem.