The paper proposes a new method of dynamic VaR and CVaR risk measures forecasting. The method is designed for obtaining the forecast estimates of risk measures for volatile time series with long range dependence. The ...The paper proposes a new method of dynamic VaR and CVaR risk measures forecasting. The method is designed for obtaining the forecast estimates of risk measures for volatile time series with long range dependence. The method is based on the heteroskedastic time series model. The FIGARCH model is used for volatility modeling and forecasting. The model is reduced to the AR model of infinite order. The reduced system of Yule-Walker equations is solved to find the autoregression coefficients. The regression equation for the autocorrelation function based on the definition of a long-range dependence is used to get the autocorrelation estimates. An optimization procedure is proposed to specify the estimates of autocorrelation coefficients. The procedure for obtaining of the forecast values of dynamic risk measures VaR and CVaR is formalized as a multi-step algorithm. The algorithm includes the following steps: autoregression forecasting, innovation highlighting, obtaining of the assessments for static risk measures for residuals of the model, forming of the final forecast using the proposed formulas, quality analysis of the results. The proposed method is applied to the time series of the index of the Tokyo stock exchange. The quality analysis using various tests is conducted and confirmed the high quality of the obtained estimates.展开更多
We study the tail probability of the stationary distribution of nonparametric nonlinear autoregressive functional conditional heteroscedastic (NARFCH) model with heavytailed innovations. Our result shows that the tail...We study the tail probability of the stationary distribution of nonparametric nonlinear autoregressive functional conditional heteroscedastic (NARFCH) model with heavytailed innovations. Our result shows that the tail of the stationary marginal distribution of an NARFCH series is heavily dependent on its conditional variance. When the innovations are heavy-tailed, the tail of the stationary marginal distribution of the series will become heavier or thinner than that of its innovations. We give some specific formulas to show how the increment or decrement of tail heaviness depends on the assumption on the conditional variance function. Some examples are given.展开更多
In this paper, by making use of the Hadamard product of matrices, a natural and reasonable generalization of the univariate GARCH (Generalized Autoregressive Conditional heteroscedastic) process introduced by Bollersl...In this paper, by making use of the Hadamard product of matrices, a natural and reasonable generalization of the univariate GARCH (Generalized Autoregressive Conditional heteroscedastic) process introduced by Bollerslev (J. Econometrics 31(1986), 307-327) to the multivariate case is proposed. The conditions for the existence of strictly stationary and ergodic solutions and the existence of higher-order moments for this class of parametric models are derived.展开更多
文摘The paper proposes a new method of dynamic VaR and CVaR risk measures forecasting. The method is designed for obtaining the forecast estimates of risk measures for volatile time series with long range dependence. The method is based on the heteroskedastic time series model. The FIGARCH model is used for volatility modeling and forecasting. The model is reduced to the AR model of infinite order. The reduced system of Yule-Walker equations is solved to find the autoregression coefficients. The regression equation for the autocorrelation function based on the definition of a long-range dependence is used to get the autocorrelation estimates. An optimization procedure is proposed to specify the estimates of autocorrelation coefficients. The procedure for obtaining of the forecast values of dynamic risk measures VaR and CVaR is formalized as a multi-step algorithm. The algorithm includes the following steps: autoregression forecasting, innovation highlighting, obtaining of the assessments for static risk measures for residuals of the model, forming of the final forecast using the proposed formulas, quality analysis of the results. The proposed method is applied to the time series of the index of the Tokyo stock exchange. The quality analysis using various tests is conducted and confirmed the high quality of the obtained estimates.
基金supported by the National Natural Science Foundation of China(Grant No.10471005).
文摘We study the tail probability of the stationary distribution of nonparametric nonlinear autoregressive functional conditional heteroscedastic (NARFCH) model with heavytailed innovations. Our result shows that the tail of the stationary marginal distribution of an NARFCH series is heavily dependent on its conditional variance. When the innovations are heavy-tailed, the tail of the stationary marginal distribution of the series will become heavier or thinner than that of its innovations. We give some specific formulas to show how the increment or decrement of tail heaviness depends on the assumption on the conditional variance function. Some examples are given.
文摘In this paper, by making use of the Hadamard product of matrices, a natural and reasonable generalization of the univariate GARCH (Generalized Autoregressive Conditional heteroscedastic) process introduced by Bollerslev (J. Econometrics 31(1986), 307-327) to the multivariate case is proposed. The conditions for the existence of strictly stationary and ergodic solutions and the existence of higher-order moments for this class of parametric models are derived.