The chaotic dynamics of the softening-spring Duffing system with multi-frequency external periodic forces is studied. It is found that the mechanism for chaos is the transverse heteroclinic tori. The Poincaré map...The chaotic dynamics of the softening-spring Duffing system with multi-frequency external periodic forces is studied. It is found that the mechanism for chaos is the transverse heteroclinic tori. The Poincaré map, the stable and the unstable manifolds of the system under two incommensurate periodic forces were set up on a two-dimensional torus. Utilizing a global perturbation technique of Melnikov the criterion for the transverse interaction of the stable and the unstable manifolds was given. The system under more but finite incommensurate periodic forces was also studied. The (Melnikov's) global perturbation technique was therefore generalized to higher dimensional systems. The region in parameter space where chaotic dynamics may occur was given. It was also demonstrated that increasing the number of forcing frequencies will increase the area in parameter space where chaotic behavior can occur.展开更多
文摘The chaotic dynamics of the softening-spring Duffing system with multi-frequency external periodic forces is studied. It is found that the mechanism for chaos is the transverse heteroclinic tori. The Poincaré map, the stable and the unstable manifolds of the system under two incommensurate periodic forces were set up on a two-dimensional torus. Utilizing a global perturbation technique of Melnikov the criterion for the transverse interaction of the stable and the unstable manifolds was given. The system under more but finite incommensurate periodic forces was also studied. The (Melnikov's) global perturbation technique was therefore generalized to higher dimensional systems. The region in parameter space where chaotic dynamics may occur was given. It was also demonstrated that increasing the number of forcing frequencies will increase the area in parameter space where chaotic behavior can occur.