Background During the blood stage of malaria infection, parasites internalize in the host red blood cells and degrade massive amounts of hemoglobin for their development. Although the morphology of the parasite's hem...Background During the blood stage of malaria infection, parasites internalize in the host red blood cells and degrade massive amounts of hemoglobin for their development. Although the morphology of the parasite's hemoglobin uptake pathway has been clearly observed, little has been known about its molecular mechanisms. Methods The recombinant proteins from Plasmodium falciparum, dynamin like protein 1 (PfDYN1) and 2 (PfDYN2) GTPase domain, were expressed in E .coil and showed GTPase activity. By using a dynamin inhibitor, dynasore, we demonstrated the involvement of PfDYN1 in the hemoglobin uptake pathway. Results The GTPase activity of the two recombinant proteins was inhibited by dynasore in vitro. Treatment of parasite cultures with 80 μmol/L dynasore at the ring and early trophozoite stage resulted in substantial inhibition of parasite growth and in an obvious decline of hemoglobin quantum. Furthermore, reduced intracellular hemozoin accumulation and decreased uptake of the FITC-dextran were also observed, together with distinctive changes in the ultrastructure of parasites after the dynasore treatment. Conclusions Our results show that PfDYN1 plays an important role in the hemoglobin uptake pathway of P. falciparum and suggest its possibility of being a novel target for malaria chemotherapy.展开更多
基金This work was supported by the research grants from the National Basic Research Program of China (973 Program, No. 2007CB513100), the High-Tech Research and Development Program of China (863 Program, No. 2006AA028471), the China's Major Infectious Diseases of Major Special Program (No. 2008ZX10004-011), and the grant of National Natural Science Foundation of China (No. 30170876).
文摘Background During the blood stage of malaria infection, parasites internalize in the host red blood cells and degrade massive amounts of hemoglobin for their development. Although the morphology of the parasite's hemoglobin uptake pathway has been clearly observed, little has been known about its molecular mechanisms. Methods The recombinant proteins from Plasmodium falciparum, dynamin like protein 1 (PfDYN1) and 2 (PfDYN2) GTPase domain, were expressed in E .coil and showed GTPase activity. By using a dynamin inhibitor, dynasore, we demonstrated the involvement of PfDYN1 in the hemoglobin uptake pathway. Results The GTPase activity of the two recombinant proteins was inhibited by dynasore in vitro. Treatment of parasite cultures with 80 μmol/L dynasore at the ring and early trophozoite stage resulted in substantial inhibition of parasite growth and in an obvious decline of hemoglobin quantum. Furthermore, reduced intracellular hemozoin accumulation and decreased uptake of the FITC-dextran were also observed, together with distinctive changes in the ultrastructure of parasites after the dynasore treatment. Conclusions Our results show that PfDYN1 plays an important role in the hemoglobin uptake pathway of P. falciparum and suggest its possibility of being a novel target for malaria chemotherapy.