Following successful establishment of a rat model of spinal cord hemisection injury by resecting right spinal cord tissues, bone marrow stem cells were transplanted into the spinal cord lesions via the caudal vein whi...Following successful establishment of a rat model of spinal cord hemisection injury by resecting right spinal cord tissues, bone marrow stem cells were transplanted into the spinal cord lesions via the caudal vein while maintaining rectal temperature at 34 ± 0.5°C for 6 hours (mild hypothermia). Hematoxylin-eosin staining showed that astrocytes gathered around the injury site and formed scars at 4 weeks post-transplantation. Compared with rats transplanted with bone marrow stem cells under normal temperature, rats transplanted with bone marrow stem cells under hypothermia showed increased numbers of proliferating cells (bromodeoxyuridine-positive cells), better recovery of somatosensory-evoked and motor-evoked potentials, greater Basso, Beattie, and Bresnahan locomotor rating scores, and an increased degree of angle in the incline plate test. These findings suggested that hypothermia combined with bone marrow mesenchymal stem cells transplantation effectively promoted electrical conduction and nerve functional repair in a rat model of spinal cord hemisection injury.展开更多
We examined the restorative effect of modified biodegradable chitin conduits in combination with bone marrow mesenchymal stem cell transplantation after right spinal cord hemisection injury. Immunohistochemical staini...We examined the restorative effect of modified biodegradable chitin conduits in combination with bone marrow mesenchymal stem cell transplantation after right spinal cord hemisection injury. Immunohistochemical staining revealed that biological conduit sleeve bridging reduced glial scar formation and spinal muscular atrophy after spinal cord hemisection. Bone marrow mesenchymal stem cells survived and proliferated after transplantation in vivo, and differentiated into cells double-positive for S100 (Schwann cell marker) and glial fibrillary acidic protein (glial cell marker) at 8 weeks. Retrograde tracing showed that more nerve fibers had grown through the injured spinal cord at 14 weeks after combination therapy than either treatment alone. Our findings indicate that a biological conduit combined with bone marrow mesenchymal stem cell transplantation effectively prevented scar formation and provided a favorable local microenvi- ronment for the proliferation, migration and differentiation of bone marrow mesenchymal stem cells in the spinal cord, thus promoting restoration following spinal cord hemisection injury.展开更多
Biomaterial bridging provides physical substrates to guide axonal growth across the lesion.To achieve efficient directional guidance,combinatory strategies using permissive matrix,cells and trophic factors are necessa...Biomaterial bridging provides physical substrates to guide axonal growth across the lesion.To achieve efficient directional guidance,combinatory strategies using permissive matrix,cells and trophic factors are necessary.In the present study,we evaluated permissive effect of poly(acrylonitrile-co-vinyl chloride)guidance channels filled by different densities of laminin-precoated unidirectional polypropylene filaments combined with Schwann cells,and glial cell line-derived neurotrophic factor for axonal regeneration through a T10 hemisected spinal cord gap in adult rats.We found that channels with filaments significantly reduced the lesion cavity,astrocytic gliosis,and inflammatory responses at the graft-host boundaries.The laminin coated low density filament provided the most favorable directional guidance for axonal regeneration which was enhanced by co-grafting of Schwann cells and glial cell line-derived neurotrophic factor.These results demonstrate that the combinatorial strategy of filament-filled guiding scaffold,adhesive molecular laminin,Schwann cells,and glial cell line-derived neurotrophic factor,provides optimal topographical cues in stimulating directional axonal regeneration following spinal cord injury.This study was approved by Indiana University Institutional Animal Care and Use Committees(IACUC#:11011)on October 29,2015.展开更多
This study established the following groups of rats: a normal group, a sham surgery group, a spinal cord injury model group, a low-frequency electroacupuncture group, a high-frequency electroacupuncture group and a s...This study established the following groups of rats: a normal group, a sham surgery group, a spinal cord injury model group, a low-frequency electroacupuncture group, a high-frequency electroacupuncture group and a semen coicis group. In all but the normal and sham surgery groups the left half of Tlo was transected. Four hours after model induction, 5-Hz and 100-Hz electroacupuncture were used to stimulate the acupoints I-luantiao (GB 30), Zusan/i (ST 36), Zhiyan9 (DU 9) and Xuanshu (DU 5), or crude extract from semen coicis was intraperitoneally injected, for 8 consecutive weeks. The results indicated that electroacupuncture stimulation and intraperitoneal injection of semen coicis improved the morphology of spinal cord tissue, promoted the recovery of motion-evoked potentials, suppressed glial fibrillary acidic protein expression, and ameliorated motor function in rats with hemisection spinal cord injury. The effects of high-frequency (100 Hz) electroacupuncture ancl semen coicis were significant.展开更多
The coronal-radicular amputation or radicular hemisection is defined as the sectioning fragments coronal-radicular of the lower molar with clinical damage followed endodontic treatment and pros-thetics rehabilitation....The coronal-radicular amputation or radicular hemisection is defined as the sectioning fragments coronal-radicular of the lower molar with clinical damage followed endodontic treatment and pros-thetics rehabilitation. This clinical treatment is viable in presence of the radicular decay or furca damage. This is a report case of radicular hemisection of lower molar with decay and bone loss that compromise distal root. The objective was elimination of distal root and conserved mesial root with endodontic and prosthetics treatment.展开更多
基金sponsored by the Science and Technology Foundation of Tianjin Health Bureau, No. 2010ky04Application Basic and Front Technology Projects of Tianjin(Science and Technology Foundation of Tianjin)No.12JCYBJC18000
文摘Following successful establishment of a rat model of spinal cord hemisection injury by resecting right spinal cord tissues, bone marrow stem cells were transplanted into the spinal cord lesions via the caudal vein while maintaining rectal temperature at 34 ± 0.5°C for 6 hours (mild hypothermia). Hematoxylin-eosin staining showed that astrocytes gathered around the injury site and formed scars at 4 weeks post-transplantation. Compared with rats transplanted with bone marrow stem cells under normal temperature, rats transplanted with bone marrow stem cells under hypothermia showed increased numbers of proliferating cells (bromodeoxyuridine-positive cells), better recovery of somatosensory-evoked and motor-evoked potentials, greater Basso, Beattie, and Bresnahan locomotor rating scores, and an increased degree of angle in the incline plate test. These findings suggested that hypothermia combined with bone marrow mesenchymal stem cells transplantation effectively promoted electrical conduction and nerve functional repair in a rat model of spinal cord hemisection injury.
基金supported by grants from the National Program on Key Basic Research Project of China(973 Program),No.2014CB542201Program for Innovative Research Team in University of Ministry of Education of China,No.IRT1201+2 种基金the National Natural Science Foundation of China,No.31271284,31171150,81171146,30971526,31100860,31040043Program for New Century Excellent Talents in University of Ministry of Education of China,No.BMU20110270the Natural Science Foundation of Beijing of China,No.7142164
文摘We examined the restorative effect of modified biodegradable chitin conduits in combination with bone marrow mesenchymal stem cell transplantation after right spinal cord hemisection injury. Immunohistochemical staining revealed that biological conduit sleeve bridging reduced glial scar formation and spinal muscular atrophy after spinal cord hemisection. Bone marrow mesenchymal stem cells survived and proliferated after transplantation in vivo, and differentiated into cells double-positive for S100 (Schwann cell marker) and glial fibrillary acidic protein (glial cell marker) at 8 weeks. Retrograde tracing showed that more nerve fibers had grown through the injured spinal cord at 14 weeks after combination therapy than either treatment alone. Our findings indicate that a biological conduit combined with bone marrow mesenchymal stem cell transplantation effectively prevented scar formation and provided a favorable local microenvi- ronment for the proliferation, migration and differentiation of bone marrow mesenchymal stem cells in the spinal cord, thus promoting restoration following spinal cord hemisection injury.
基金Research in the Xu laboratory is supported by NIH 1R01100531,1R01 NS103481Merit Review Award I01 BX002356,I01 BX003705,I01 RX002687 from the U.S.Department of Veterans AffairsMari Hulman George Endowment Funds.
文摘Biomaterial bridging provides physical substrates to guide axonal growth across the lesion.To achieve efficient directional guidance,combinatory strategies using permissive matrix,cells and trophic factors are necessary.In the present study,we evaluated permissive effect of poly(acrylonitrile-co-vinyl chloride)guidance channels filled by different densities of laminin-precoated unidirectional polypropylene filaments combined with Schwann cells,and glial cell line-derived neurotrophic factor for axonal regeneration through a T10 hemisected spinal cord gap in adult rats.We found that channels with filaments significantly reduced the lesion cavity,astrocytic gliosis,and inflammatory responses at the graft-host boundaries.The laminin coated low density filament provided the most favorable directional guidance for axonal regeneration which was enhanced by co-grafting of Schwann cells and glial cell line-derived neurotrophic factor.These results demonstrate that the combinatorial strategy of filament-filled guiding scaffold,adhesive molecular laminin,Schwann cells,and glial cell line-derived neurotrophic factor,provides optimal topographical cues in stimulating directional axonal regeneration following spinal cord injury.This study was approved by Indiana University Institutional Animal Care and Use Committees(IACUC#:11011)on October 29,2015.
基金the High-funded Projects of Japan Science and Technology Ministry,No. 343the National Natural Science Foundation of China,No. 30772838
文摘This study established the following groups of rats: a normal group, a sham surgery group, a spinal cord injury model group, a low-frequency electroacupuncture group, a high-frequency electroacupuncture group and a semen coicis group. In all but the normal and sham surgery groups the left half of Tlo was transected. Four hours after model induction, 5-Hz and 100-Hz electroacupuncture were used to stimulate the acupoints I-luantiao (GB 30), Zusan/i (ST 36), Zhiyan9 (DU 9) and Xuanshu (DU 5), or crude extract from semen coicis was intraperitoneally injected, for 8 consecutive weeks. The results indicated that electroacupuncture stimulation and intraperitoneal injection of semen coicis improved the morphology of spinal cord tissue, promoted the recovery of motion-evoked potentials, suppressed glial fibrillary acidic protein expression, and ameliorated motor function in rats with hemisection spinal cord injury. The effects of high-frequency (100 Hz) electroacupuncture ancl semen coicis were significant.
文摘The coronal-radicular amputation or radicular hemisection is defined as the sectioning fragments coronal-radicular of the lower molar with clinical damage followed endodontic treatment and pros-thetics rehabilitation. This clinical treatment is viable in presence of the radicular decay or furca damage. This is a report case of radicular hemisection of lower molar with decay and bone loss that compromise distal root. The objective was elimination of distal root and conserved mesial root with endodontic and prosthetics treatment.