Cardiac pacing is a medical device to help human to overcome arrhythmia and to recover the regular beats of heart. A helical configuration of electrode tip is a new type of cardiac pacing lead distal tip. The helical ...Cardiac pacing is a medical device to help human to overcome arrhythmia and to recover the regular beats of heart. A helical configuration of electrode tip is a new type of cardiac pacing lead distal tip. The helical electrode attaches itself to the desired site of heart by screwing its helical tip into the myocardium. In vivo experiments on anesthetized dogs were carried out to measure the acute interactions between helical electrode and myocardium during screw-in and pull-out processes. These data would be helpful for electrode tip design and electrode/myocardium adherence safety evaluation. They also provide reliability data for clinical site choice of human heart to implant and to fix the pacing lead. A special design of the helical tip using strain gauges is instrumented for the measurement of the screw-in and pull-out forces. We obtained the data of screw-in torques and pull-out forces for five different types of helical electrodes at nine designed sites on ten canine hearts. The results indicate that the screw-in torques increased steplike while the torque-time curves presente saw-tooth fashion. The maximum torque has a range of 0.3-1.9 Nmm. Obvious differences are observed for different types of helical tips and for different test sites. Large pull-out forces are frequently obtained at epicardium of left ventricle and right ventricle lateral wall, and the forces obtained at right ventricle apex and outflow tract of right ventricle are normally small. The differences in pull-out forces are dictated by the geometrical configuration of helix and regional structures of heart muscle.展开更多
In aero-engines,mortise-tenon joint structures are often used to connect the blades to the turbine disk.The disadvantages associated with conventional manufacturing techniques mean that a low-cost,high-efficiency,and ...In aero-engines,mortise-tenon joint structures are often used to connect the blades to the turbine disk.The disadvantages associated with conventional manufacturing techniques mean that a low-cost,high-efficiency,and high-quality nickel-based mortise–tenon joint structure is an urgent requirement in the field of aviation engineering.Electrochemical cutting is a potential machining method for manufacturing these parts,as there is no tool degradation in the cutting process and high-quality surfaces can be obtained.To realize the electrochemical cutting of a mortise-tenon joint structure,a method using a tube electrode with helically distributed jet-flow holes on the side-wall is proposed.During feeding,the tube electrode rotates along its central axis.Flow field simulations show that the rotational speed of the tube electrode determines the direct spraying time of the high-speed electrolyte ejected from the jet-flow holes to the machining area,while the electrolyte pressure determines the flow rate of the electrolyte and the velocity of the electrolyte ejected from the jet-flow holes.The machining results using the proposed method are verified experimentally,and the machining parameters are optimized.Finally,mortise and tenon samples are successfully machined using 20 mm thick Inconel 718 alloy with a feeding rate of 5μm/s.展开更多
文摘Cardiac pacing is a medical device to help human to overcome arrhythmia and to recover the regular beats of heart. A helical configuration of electrode tip is a new type of cardiac pacing lead distal tip. The helical electrode attaches itself to the desired site of heart by screwing its helical tip into the myocardium. In vivo experiments on anesthetized dogs were carried out to measure the acute interactions between helical electrode and myocardium during screw-in and pull-out processes. These data would be helpful for electrode tip design and electrode/myocardium adherence safety evaluation. They also provide reliability data for clinical site choice of human heart to implant and to fix the pacing lead. A special design of the helical tip using strain gauges is instrumented for the measurement of the screw-in and pull-out forces. We obtained the data of screw-in torques and pull-out forces for five different types of helical electrodes at nine designed sites on ten canine hearts. The results indicate that the screw-in torques increased steplike while the torque-time curves presente saw-tooth fashion. The maximum torque has a range of 0.3-1.9 Nmm. Obvious differences are observed for different types of helical tips and for different test sites. Large pull-out forces are frequently obtained at epicardium of left ventricle and right ventricle lateral wall, and the forces obtained at right ventricle apex and outflow tract of right ventricle are normally small. The differences in pull-out forces are dictated by the geometrical configuration of helix and regional structures of heart muscle.
基金supported by the National Natural Science Foundation of China(No.91960204)the Natural Science Foundation of Jiangsu Province(No.BK20191279)+1 种基金the Aeronautical Science Foundation of China(No.201907052002)the National Natural Science Foundation of China for Creative Research Groups(No.51921003)。
文摘In aero-engines,mortise-tenon joint structures are often used to connect the blades to the turbine disk.The disadvantages associated with conventional manufacturing techniques mean that a low-cost,high-efficiency,and high-quality nickel-based mortise–tenon joint structure is an urgent requirement in the field of aviation engineering.Electrochemical cutting is a potential machining method for manufacturing these parts,as there is no tool degradation in the cutting process and high-quality surfaces can be obtained.To realize the electrochemical cutting of a mortise-tenon joint structure,a method using a tube electrode with helically distributed jet-flow holes on the side-wall is proposed.During feeding,the tube electrode rotates along its central axis.Flow field simulations show that the rotational speed of the tube electrode determines the direct spraying time of the high-speed electrolyte ejected from the jet-flow holes to the machining area,while the electrolyte pressure determines the flow rate of the electrolyte and the velocity of the electrolyte ejected from the jet-flow holes.The machining results using the proposed method are verified experimentally,and the machining parameters are optimized.Finally,mortise and tenon samples are successfully machined using 20 mm thick Inconel 718 alloy with a feeding rate of 5μm/s.