The climate has an impact on the urban thermal environment,and the magnitude of the surface urban heat island(SUHI)and urban cool island(UCI)vary across the world’s climatic zones.This literature review investigated:...The climate has an impact on the urban thermal environment,and the magnitude of the surface urban heat island(SUHI)and urban cool island(UCI)vary across the world’s climatic zones.This literature review investigated:1)the variations in the SUHI and UCI intensity under different climatic backgrounds,and 2)the effect of vegetation types,landscape composition,urban configuration,and water bodies on the SUHI.The SUHI had a higher intensity in tropical(Af(tropical rainy climate,Köppen climate classification),Am(tropical monsoon climate),subtropical(Cfa,subtropical humid climate),and humid continental(Dwa,semi-humid and semi-arid monsoon climate)climate zones.The magnitude of the UCI was low compared to the SUHI across the climate zones.The cool and dry Mediterranean(Cfb,temperate marine climate;Csb,temperate mediterranean climate;Cfa)and tropical climate(Af)areas had a higher cooling intensity.For cities with a desert climate(BWh,tropical desert climate),a reverse pattern was found.The difference in the SUHI in the night-time was greater than in the daytime for most cities across the climate zones.The extent of green space cooling was related to city size,the adjacent impervious surface,and the local climate.Additionally,the composition of urban landscape elements was more significant than their configuration for sustaining the urban thermal environment.Finally,we identified future research gaps for possible solutions in the context of sustainable urbanization in different climate zones.展开更多
Urban parks composed mostly of vegetation and water bodies can effectively mitigate the urban heat island effect. Many studies have investigated the cooling effects of urban parks; however, little attention has been g...Urban parks composed mostly of vegetation and water bodies can effectively mitigate the urban heat island effect. Many studies have investigated the cooling effects of urban parks; however, little attention has been given to park landscape structure. Based on landscape metrics, this study has explored the influences of the park landscape structure on its inner thermal environment, taking heavily urbanized Beijing Municipality in China as the study area. Three indices, including the percentage of landscape (PLAND), landscape shape index (LSI) and aggregation index (AI), were used to measure the composition and configuration characteristics of the landscape components inside the parks. The indices were calculated for five landscape types being interpreted from Quickbird images. Urban thermal conditions were measured using the land surface temperature (LST) derived from Landsat TM images. The results showed that the park LST had a negative relationship with the park size, but no significant relationship was found with park shape. For the park's interior landscape, however, the configuration and composition characteristics of the landscape components inside the park explained 70% of the park LST variance. The area percentage of water bodies and the aggregation index of woodland were identified as the key influencing characteristics. In addition, when the composition and configuration characteristics of the park landscape components were separately considered, the configuration characteristics (LSI and A1) explained approximately 54% of the variance in park LST, which was comparable with that explained by the composition characteristics (PLAND). Thus, this study suggested that an effective and practical way for urban cooling park design is the optimization of spatial configuration of landscape components inside the park.展开更多
基金Under the auspices of the National Natural Science Foundation of China(No.41590841)the National Key Research and Development Program of China(No.2016YFC0503000)the Research Funds of the Chinese Academy of Sciences the Chinese Academy of Sciences(CAS)-the World Academy of Sciences(TWAS)President’s Fellowship。
文摘The climate has an impact on the urban thermal environment,and the magnitude of the surface urban heat island(SUHI)and urban cool island(UCI)vary across the world’s climatic zones.This literature review investigated:1)the variations in the SUHI and UCI intensity under different climatic backgrounds,and 2)the effect of vegetation types,landscape composition,urban configuration,and water bodies on the SUHI.The SUHI had a higher intensity in tropical(Af(tropical rainy climate,Köppen climate classification),Am(tropical monsoon climate),subtropical(Cfa,subtropical humid climate),and humid continental(Dwa,semi-humid and semi-arid monsoon climate)climate zones.The magnitude of the UCI was low compared to the SUHI across the climate zones.The cool and dry Mediterranean(Cfb,temperate marine climate;Csb,temperate mediterranean climate;Cfa)and tropical climate(Af)areas had a higher cooling intensity.For cities with a desert climate(BWh,tropical desert climate),a reverse pattern was found.The difference in the SUHI in the night-time was greater than in the daytime for most cities across the climate zones.The extent of green space cooling was related to city size,the adjacent impervious surface,and the local climate.Additionally,the composition of urban landscape elements was more significant than their configuration for sustaining the urban thermal environment.Finally,we identified future research gaps for possible solutions in the context of sustainable urbanization in different climate zones.
基金Under the auspices of the important National Project of high-resolution Earth Observation System(No.00-Y30B15-9001-14/16)National Natural Science Foundation of China(No.41421001)
文摘Urban parks composed mostly of vegetation and water bodies can effectively mitigate the urban heat island effect. Many studies have investigated the cooling effects of urban parks; however, little attention has been given to park landscape structure. Based on landscape metrics, this study has explored the influences of the park landscape structure on its inner thermal environment, taking heavily urbanized Beijing Municipality in China as the study area. Three indices, including the percentage of landscape (PLAND), landscape shape index (LSI) and aggregation index (AI), were used to measure the composition and configuration characteristics of the landscape components inside the parks. The indices were calculated for five landscape types being interpreted from Quickbird images. Urban thermal conditions were measured using the land surface temperature (LST) derived from Landsat TM images. The results showed that the park LST had a negative relationship with the park size, but no significant relationship was found with park shape. For the park's interior landscape, however, the configuration and composition characteristics of the landscape components inside the park explained 70% of the park LST variance. The area percentage of water bodies and the aggregation index of woodland were identified as the key influencing characteristics. In addition, when the composition and configuration characteristics of the park landscape components were separately considered, the configuration characteristics (LSI and A1) explained approximately 54% of the variance in park LST, which was comparable with that explained by the composition characteristics (PLAND). Thus, this study suggested that an effective and practical way for urban cooling park design is the optimization of spatial configuration of landscape components inside the park.