Hydrodynamics characterization in terms offlow regime behavior is a crucial task to enhance the design of bubble column reactors and scaling up related methodologies.This review presents recent studies on the typicalflo...Hydrodynamics characterization in terms offlow regime behavior is a crucial task to enhance the design of bubble column reactors and scaling up related methodologies.This review presents recent studies on the typicalflow regimes established in bubble columns.Some effort is also provided to introduce relevant definitions pertaining to thisfield,namely,that of“void fraction”and related(local,chordal,cross-sectional and volumetric)variants.Experimental studies involving different parameters that affect design and operating conditions are also discussed in detail.In the second part of the review,the attention is shifted to cases with internals of various types(perfo-rated plates,baffles,vibrating helical springs,mixers,and heat exchanger tubes)immersed in the bubble columns.It is shown that the presence of these elements has a limited influence on the global column hydrodynamics.However,they can make the homogeneousflow regime more stable in terms of transition gas velocity and transi-tion holdup value.The last section is used to highlight gaps which have not beenfilled yet and future directions of investigation.展开更多
A dedicated heat exchanger model is introduced for the optimization of heavy-duty diesel engines.The model is a prerequisite for the execution of CFD simulations,which are used to improve waste heat recovery in these ...A dedicated heat exchanger model is introduced for the optimization of heavy-duty diesel engines.The model is a prerequisite for the execution of CFD simulations,which are used to improve waste heat recovery in these systems.Several optimization methods coupled with different types of working fluids are compared in terms of exergy efficiency and heat exchanger complicity.The three considered optimization methods all lead to significant improvements in the R245fa and R1233zd systems with a comparatively low evaporation temperature.The optimal R245fa system has the highest efficiency increase(77.49%).The cyclopentane system displays the highest efficiency among the optimized ORC(Organic Rankine Cycle)systems,yet achieved by using a much heavier evaporator HEC(Heat Exchanging Core).In contrast,the 96.84%efficiency increase for the optimized R1233zd is achieved with only 68.96%evaporator weight.展开更多
Bubble and slurry bubble column reactors(BCRs/SBCRs)are used for various chemical,biochemical,and petro-chemical applications.They have several operational and maintenance advantages,including excellent heat and mass ...Bubble and slurry bubble column reactors(BCRs/SBCRs)are used for various chemical,biochemical,and petro-chemical applications.They have several operational and maintenance advantages,including excellent heat and mass transfer rates,simplicity,and low operating and maintenance cost.Typically,a catalyst is present in addition to biochemical processes where microorganisms are used to produce industrially valuable bio-products.Since most applications involve complicated gas-liquid,gas-liquid-solid,and exothermic processes,the BCR/SBCR must be equipped with heat-exchanging tubes to dissipate heat and control the reactor’s overall performance.In this review,past and very recent experimental and numerical investigations on such systems are critically dis-cussed.Furthermore,gaps to befilled and critical aspects still requiring investigation are identified.展开更多
文摘Hydrodynamics characterization in terms offlow regime behavior is a crucial task to enhance the design of bubble column reactors and scaling up related methodologies.This review presents recent studies on the typicalflow regimes established in bubble columns.Some effort is also provided to introduce relevant definitions pertaining to thisfield,namely,that of“void fraction”and related(local,chordal,cross-sectional and volumetric)variants.Experimental studies involving different parameters that affect design and operating conditions are also discussed in detail.In the second part of the review,the attention is shifted to cases with internals of various types(perfo-rated plates,baffles,vibrating helical springs,mixers,and heat exchanger tubes)immersed in the bubble columns.It is shown that the presence of these elements has a limited influence on the global column hydrodynamics.However,they can make the homogeneousflow regime more stable in terms of transition gas velocity and transi-tion holdup value.The last section is used to highlight gaps which have not beenfilled yet and future directions of investigation.
基金funded by National Engineering Laboratory for Mobile Source Emission Control Technology of China[Grant No.NELMS2019A01]the Undergraduate School of Shandong University,China[Grant No.2022Y155].
文摘A dedicated heat exchanger model is introduced for the optimization of heavy-duty diesel engines.The model is a prerequisite for the execution of CFD simulations,which are used to improve waste heat recovery in these systems.Several optimization methods coupled with different types of working fluids are compared in terms of exergy efficiency and heat exchanger complicity.The three considered optimization methods all lead to significant improvements in the R245fa and R1233zd systems with a comparatively low evaporation temperature.The optimal R245fa system has the highest efficiency increase(77.49%).The cyclopentane system displays the highest efficiency among the optimized ORC(Organic Rankine Cycle)systems,yet achieved by using a much heavier evaporator HEC(Heat Exchanging Core).In contrast,the 96.84%efficiency increase for the optimized R1233zd is achieved with only 68.96%evaporator weight.
文摘Bubble and slurry bubble column reactors(BCRs/SBCRs)are used for various chemical,biochemical,and petro-chemical applications.They have several operational and maintenance advantages,including excellent heat and mass transfer rates,simplicity,and low operating and maintenance cost.Typically,a catalyst is present in addition to biochemical processes where microorganisms are used to produce industrially valuable bio-products.Since most applications involve complicated gas-liquid,gas-liquid-solid,and exothermic processes,the BCR/SBCR must be equipped with heat-exchanging tubes to dissipate heat and control the reactor’s overall performance.In this review,past and very recent experimental and numerical investigations on such systems are critically dis-cussed.Furthermore,gaps to befilled and critical aspects still requiring investigation are identified.