The monthly and annual mean freshwater, heat and salt transport through the openboundaries of the South and East China Seas derived from a variable-grid global ocean circulation model is reported. The model has 1/6 re...The monthly and annual mean freshwater, heat and salt transport through the openboundaries of the South and East China Seas derived from a variable-grid global ocean circulation model is reported. The model has 1/6 resolution for the seas adjacent to China and 3 resolution for the global ocean. The model results are in fairly good agreement with the existing estimates based on measurements. The computation shows that the flows passing through the South China Sea contribute volume, heat and salt transport of 5.3 Sv, 0.57 PW and 184 Ggs-1, respectively (about 1/4) to the Indonesian Throughflow, indicating that the South China Sea is an important pathway of the Pacific to Indian Ocean throughflow. The volume, heat and salt transport of the Kuroshio in the East China Sea is 25.6 Sv, 2.32 PW and 894 Ggs-1, respectively. Less than 1/4 of this transport passes through the passage between Iriomote and Okinawa. The calculation of heat balance indicates that the South China Sea absorbs net heat flux from the sun and atmosphere with a rate of 0.08 PW, while the atmosphere gains net heat flux from the Baohai, Yellow and East China Seas with a rate of 0.05 PW.展开更多
基金the National Natural Science Foundation of China (Grant No. 49876010) the Major State Basic Research Program (Grant No. G1999043808)+1 种基金 the National Key Science and Technology Pro-ject (Grant No. 97-926-05-01) Youth Fund of the National 863 Project (G
文摘The monthly and annual mean freshwater, heat and salt transport through the openboundaries of the South and East China Seas derived from a variable-grid global ocean circulation model is reported. The model has 1/6 resolution for the seas adjacent to China and 3 resolution for the global ocean. The model results are in fairly good agreement with the existing estimates based on measurements. The computation shows that the flows passing through the South China Sea contribute volume, heat and salt transport of 5.3 Sv, 0.57 PW and 184 Ggs-1, respectively (about 1/4) to the Indonesian Throughflow, indicating that the South China Sea is an important pathway of the Pacific to Indian Ocean throughflow. The volume, heat and salt transport of the Kuroshio in the East China Sea is 25.6 Sv, 2.32 PW and 894 Ggs-1, respectively. Less than 1/4 of this transport passes through the passage between Iriomote and Okinawa. The calculation of heat balance indicates that the South China Sea absorbs net heat flux from the sun and atmosphere with a rate of 0.08 PW, while the atmosphere gains net heat flux from the Baohai, Yellow and East China Seas with a rate of 0.05 PW.