This paper presents an application of synergy methodology to a multi- objective operational control of reservoirs. This methodology enables a comprehensive consideration of multi-objectives which may be conflicting an...This paper presents an application of synergy methodology to a multi- objective operational control of reservoirs. This methodology enables a comprehensive consideration of multi-objectives which may be conflicting and non commensurate such as municipal and industrial water supply, flood protection, and hydroelectric power generation etc. On the basis of the synergy theory, a harmony degree model of sub- system was established to describe the coordination magnitude. Combined with information entropy, a harmony degree entropy was proposed to determine the water resources evolvement direction. While implementing the control, an initial scheme for reservoir operation was obtained from simulation first, then control was carried out according to the harmony degree and harmony degree entropy by applying synergy theory. The application of the methodology to reservoir system in the Yellow River was reported in this paper through a case study.展开更多
A modified harmony search algorithm with co-evolutional control parameters(DEHS), applied through differential evolution optimization, is proposed. In DEHS, two control parameters, i.e., harmony memory considering rat...A modified harmony search algorithm with co-evolutional control parameters(DEHS), applied through differential evolution optimization, is proposed. In DEHS, two control parameters, i.e., harmony memory considering rate and pitch adjusting rate, are encoded as a symbiotic individual of an original individual(i.e., harmony vector). Harmony search operators are applied to evolving the original population. DE is applied to co-evolving the symbiotic population based on feedback information from the original population. Thus, with the evolution of the original population in DEHS, the symbiotic population is dynamically and self-adaptively adjusted, and real-time optimum control parameters are obtained. The proposed DEHS algorithm has been applied to various benchmark functions and two typical dynamic optimization problems. The experimental results show that the performance of the proposed algorithm is better than that of other HS variants. Satisfactory results are obtained in the application.展开更多
文摘This paper presents an application of synergy methodology to a multi- objective operational control of reservoirs. This methodology enables a comprehensive consideration of multi-objectives which may be conflicting and non commensurate such as municipal and industrial water supply, flood protection, and hydroelectric power generation etc. On the basis of the synergy theory, a harmony degree model of sub- system was established to describe the coordination magnitude. Combined with information entropy, a harmony degree entropy was proposed to determine the water resources evolvement direction. While implementing the control, an initial scheme for reservoir operation was obtained from simulation first, then control was carried out according to the harmony degree and harmony degree entropy by applying synergy theory. The application of the methodology to reservoir system in the Yellow River was reported in this paper through a case study.
基金Project(2013CB733605)supported by the National Basic Research Program of ChinaProject(21176073)supported by the National Natural Science Foundation of China
文摘A modified harmony search algorithm with co-evolutional control parameters(DEHS), applied through differential evolution optimization, is proposed. In DEHS, two control parameters, i.e., harmony memory considering rate and pitch adjusting rate, are encoded as a symbiotic individual of an original individual(i.e., harmony vector). Harmony search operators are applied to evolving the original population. DE is applied to co-evolving the symbiotic population based on feedback information from the original population. Thus, with the evolution of the original population in DEHS, the symbiotic population is dynamically and self-adaptively adjusted, and real-time optimum control parameters are obtained. The proposed DEHS algorithm has been applied to various benchmark functions and two typical dynamic optimization problems. The experimental results show that the performance of the proposed algorithm is better than that of other HS variants. Satisfactory results are obtained in the application.