In this paper,the elastic wave band gap characteristics of two-dimensional hard-magnetic soft material phononic crystals(HmSM-PnCs)under the applied magnetic field are studied.Firstly,the relevant material parameters ...In this paper,the elastic wave band gap characteristics of two-dimensional hard-magnetic soft material phononic crystals(HmSM-PnCs)under the applied magnetic field are studied.Firstly,the relevant material parameters of hard-magnetic soft materials(HmSMs)are obtained by the experimental measurement.Then the finite element model of the programmable HmSM-PnCs is established to calculate its band structure under the applied magnetic field.The effects of some factors such as magnetic field,structure thickness,structure porosity,and magnetic anisotropy encoding mode on the band gap are given.The results show that the start and stop frequencies and band gap width can be tunable by changing the magnetic field.The magnetic anisotropy encoding mode has a remarkable effect on the number of band gaps and the critical magnetic field of band gaps.In addition,the effect of geometric size on PnC structure is also discussed.With the increase of the structure thickness,the start and stop frequencies of the band gap increase.展开更多
The elastic, thermodynamic, electronic, and optical properties of recently discovered and potentially technologically important transition metal boride NbRuB, are investigated using the density functional formalism. B...The elastic, thermodynamic, electronic, and optical properties of recently discovered and potentially technologically important transition metal boride NbRuB, are investigated using the density functional formalism. Both generalized gradient approximation (GGA) and local density approximation (LDA) are used for optimizing the geometry and for estimating various elastic moduli and constants. The optical properties of NbRuB are studied for the first time with different photon polarizations. The frequency (energy) dependence of various optical constants complement quite well the essential features of the electronic band structure calculations. Debye temperature of NbRuB is estimated from the thermodynamical study. All these theoretical estimates are compared with published results, where available, and discussed in detail. Both electronic band structure and optical conductivity reveal robust metallic characteristics. The NbRuB possesses significant elastic anisotropy. Electronic features, on the other hand, are almost isotropic in nature. The effects of electronic band structure and Debye temperature on the emergence of superconductivity are also analyzed.展开更多
基金funded by the National Natural Science Foundation of China(11872143).
文摘In this paper,the elastic wave band gap characteristics of two-dimensional hard-magnetic soft material phononic crystals(HmSM-PnCs)under the applied magnetic field are studied.Firstly,the relevant material parameters of hard-magnetic soft materials(HmSMs)are obtained by the experimental measurement.Then the finite element model of the programmable HmSM-PnCs is established to calculate its band structure under the applied magnetic field.The effects of some factors such as magnetic field,structure thickness,structure porosity,and magnetic anisotropy encoding mode on the band gap are given.The results show that the start and stop frequencies and band gap width can be tunable by changing the magnetic field.The magnetic anisotropy encoding mode has a remarkable effect on the number of band gaps and the critical magnetic field of band gaps.In addition,the effect of geometric size on PnC structure is also discussed.With the increase of the structure thickness,the start and stop frequencies of the band gap increase.
文摘The elastic, thermodynamic, electronic, and optical properties of recently discovered and potentially technologically important transition metal boride NbRuB, are investigated using the density functional formalism. Both generalized gradient approximation (GGA) and local density approximation (LDA) are used for optimizing the geometry and for estimating various elastic moduli and constants. The optical properties of NbRuB are studied for the first time with different photon polarizations. The frequency (energy) dependence of various optical constants complement quite well the essential features of the electronic band structure calculations. Debye temperature of NbRuB is estimated from the thermodynamical study. All these theoretical estimates are compared with published results, where available, and discussed in detail. Both electronic band structure and optical conductivity reveal robust metallic characteristics. The NbRuB possesses significant elastic anisotropy. Electronic features, on the other hand, are almost isotropic in nature. The effects of electronic band structure and Debye temperature on the emergence of superconductivity are also analyzed.