The field of vision-based human hand three-dimensional(3D)shape and pose estimation has attracted significant attention recently owing to its key role in various applications,such as natural human computer interaction...The field of vision-based human hand three-dimensional(3D)shape and pose estimation has attracted significant attention recently owing to its key role in various applications,such as natural human computer interactions.With the availability of large-scale annotated hand datasets and the rapid developments of deep neural networks(DNNs),numerous DNN-based data-driven methods have been proposed for accurate and rapid hand shape and pose estimation.Nonetheless,the existence of complicated hand articulation,depth and scale ambiguities,occlusions,and finger similarity remain challenging.In this study,we present a comprehensive survey of state-of-the-art 3D hand shape and pose estimation approaches using RGB-D cameras.Related RGB-D cameras,hand datasets,and a performance analysis are also discussed to provide a holistic view of recent achievements.We also discuss the research potential of this rapidly growing field.展开更多
Holograms provide a characteristic manner to display and convey information, and have been improved to provide better user interactions Holographic interactions are important as they improve user interactions with vir...Holograms provide a characteristic manner to display and convey information, and have been improved to provide better user interactions Holographic interactions are important as they improve user interactions with virtual objects. Gesture interaction is a recent research topic, as it allows users to use their bare hands to directly interact with the hologram. However, it remains unclear whether real hand gestures are well suited for hologram applications. Therefore, we discuss the development process and implementation of three-dimensional object manipulation using natural hand gestures in a hologram. We describe the design and development process for hologram applications and its integration with real hand gesture interactions as initial findings. Experimental results from Nasa TLX form are discussed. Based on the findings, we actualize the user interactions in the hologram.展开更多
Object recognition has many applications in human-machine interaction and multimedia retrieval. However, due to large intra-class variability and inter-class similarity, accurate recognition relying only on RGB data i...Object recognition has many applications in human-machine interaction and multimedia retrieval. However, due to large intra-class variability and inter-class similarity, accurate recognition relying only on RGB data is still a big challenge. Recently, with the emergence of inexpensive RGB-D devices, this challenge can be better addressed by leveraging additional depth information. A very special yet important case of object recognition is hand-held object recognition, as manipulating objects with hands is common and intuitive in human-human and human-machine interactions. In this paper, we study this problem and introduce an effective framework to address it. This framework first detects and segments the hand-held object by exploiting skeleton information combined with depth information. In the object recognition stage, this work exploits heterogeneous features extracted from different modalities and fuses them to improve the recognition accuracy. In particular, we incorporate handcrafted and deep learned features and study several multi-step fusion variants. Experimental evaluations validate the effectiveness of the proposed method.展开更多
基金the National Key R&D Program of China(2018YFB1004600)the National Natural Science Foundation of China(61502187,61876211)the National Science Foundation Grant CNS(1951952).
文摘The field of vision-based human hand three-dimensional(3D)shape and pose estimation has attracted significant attention recently owing to its key role in various applications,such as natural human computer interactions.With the availability of large-scale annotated hand datasets and the rapid developments of deep neural networks(DNNs),numerous DNN-based data-driven methods have been proposed for accurate and rapid hand shape and pose estimation.Nonetheless,the existence of complicated hand articulation,depth and scale ambiguities,occlusions,and finger similarity remain challenging.In this study,we present a comprehensive survey of state-of-the-art 3D hand shape and pose estimation approaches using RGB-D cameras.Related RGB-D cameras,hand datasets,and a performance analysis are also discussed to provide a holistic view of recent achievements.We also discuss the research potential of this rapidly growing field.
文摘Holograms provide a characteristic manner to display and convey information, and have been improved to provide better user interactions Holographic interactions are important as they improve user interactions with virtual objects. Gesture interaction is a recent research topic, as it allows users to use their bare hands to directly interact with the hologram. However, it remains unclear whether real hand gestures are well suited for hologram applications. Therefore, we discuss the development process and implementation of three-dimensional object manipulation using natural hand gestures in a hologram. We describe the design and development process for hologram applications and its integration with real hand gesture interactions as initial findings. Experimental results from Nasa TLX form are discussed. Based on the findings, we actualize the user interactions in the hologram.
基金This work was supported in part by the National Basic Research 973 Program of China under Grant No. 2012CB316400, the National Natural Science Foundation of China under Grant Nos. 61322212 and 61450110446, the National High Technology Research and Development 863 Program of China under Grant No. 2014AA015202, and the Chinese Academy of Sciences Fellowships for Young International Scientists under Grant No. 2011Y1GB05. This work is also funded by Lenovo Outstanding Young Scientists Program (LOYS).
文摘Object recognition has many applications in human-machine interaction and multimedia retrieval. However, due to large intra-class variability and inter-class similarity, accurate recognition relying only on RGB data is still a big challenge. Recently, with the emergence of inexpensive RGB-D devices, this challenge can be better addressed by leveraging additional depth information. A very special yet important case of object recognition is hand-held object recognition, as manipulating objects with hands is common and intuitive in human-human and human-machine interactions. In this paper, we study this problem and introduce an effective framework to address it. This framework first detects and segments the hand-held object by exploiting skeleton information combined with depth information. In the object recognition stage, this work exploits heterogeneous features extracted from different modalities and fuses them to improve the recognition accuracy. In particular, we incorporate handcrafted and deep learned features and study several multi-step fusion variants. Experimental evaluations validate the effectiveness of the proposed method.