This document presents a framework for recognizing people by palm vein distribution analysis using cross-correlation based signatures to obtain descriptors. Haar wavelets are useful in reducing the number of features ...This document presents a framework for recognizing people by palm vein distribution analysis using cross-correlation based signatures to obtain descriptors. Haar wavelets are useful in reducing the number of features while maintaining high recognition rates. This experiment achieved 97.5% of individuals classified correctly with two levels of Haar wavelets. This study used twelve-version of RGB and NIR (near infrared) wavelength images per individual. One hundred people were studied;therefore 4,800 instances compose the complete database. A Multilayer Perceptron (MLP) was trained to improve the recognition rate in a k-fold cross-validation test with k = 10. Classification results using MLP neural network were obtained using Weka (open source machine learning software).展开更多
The objective of this paper is to solve the timefractional Schr¨odinger and coupled Schr¨odinger differential equations(TFSE) with appropriate initial conditions by using the Haar wavelet approximation. For ...The objective of this paper is to solve the timefractional Schr¨odinger and coupled Schr¨odinger differential equations(TFSE) with appropriate initial conditions by using the Haar wavelet approximation. For the most part, this endeavor is made to enlarge the pertinence of the Haar wavelet method to solve a coupled system of time-fractional partial differential equations. As a general rule, piecewise constant approximation of a function at different resolutions is presentational characteristic of Haar wavelet method through which it converts the differential equation into the Sylvester equation that can be further simplified easily. Study of the TFSE is theoretical and experimental research and it also helps in the development of automation science,physics, and engineering as well. Illustratively, several test problems are discussed to draw an effective conclusion, supported by the graphical and tabulated results of included examples, to reveal the proficiency and adaptability of the method.展开更多
Objective of our paper is to present the Haar wavelet based solutions of boundary value problems by Haar collocation method and utilizing Quasilinearization technique to resolve quadratic nonlinearity in y. More accur...Objective of our paper is to present the Haar wavelet based solutions of boundary value problems by Haar collocation method and utilizing Quasilinearization technique to resolve quadratic nonlinearity in y. More accurate solutions are obtained by wavelet decomposition in the form of a multiresolution analysis of the function which represents solution of boundary value problems. Through this analysis, solutions are found on the coarse grid points and refined towards higher accuracy by increasing the level of the Haar wavelets. A distinctive feature of the proposed method is its simplicity and applicability for a variety of boundary conditions. Numerical tests are performed to check the applicability and efficiency. C++ program is developed to find the wavelet solution.展开更多
An r-adaptive boundary element method(BEM) based on unbalanced Haar wavelets(UBHWs) is developed for solving 2D Laplace equations in which the Galerkin method is used to discretize boundary integral equations.To a...An r-adaptive boundary element method(BEM) based on unbalanced Haar wavelets(UBHWs) is developed for solving 2D Laplace equations in which the Galerkin method is used to discretize boundary integral equations.To accelerate the convergence of the adaptive process,the grading function and optimization iteration methods are successively employed.Numerical results of two representative examples clearly show that,first,the combined iteration method can accelerate the convergence;moreover,by using UBHWs,the memory usage for storing the system matrix of the r-adaptive BEM can be reduced by a factor of about 100 for problems with more than 15 thousand unknowns,while the error and convergence property of the original BEM can be retained.展开更多
文摘This document presents a framework for recognizing people by palm vein distribution analysis using cross-correlation based signatures to obtain descriptors. Haar wavelets are useful in reducing the number of features while maintaining high recognition rates. This experiment achieved 97.5% of individuals classified correctly with two levels of Haar wavelets. This study used twelve-version of RGB and NIR (near infrared) wavelength images per individual. One hundred people were studied;therefore 4,800 instances compose the complete database. A Multilayer Perceptron (MLP) was trained to improve the recognition rate in a k-fold cross-validation test with k = 10. Classification results using MLP neural network were obtained using Weka (open source machine learning software).
文摘The objective of this paper is to solve the timefractional Schr¨odinger and coupled Schr¨odinger differential equations(TFSE) with appropriate initial conditions by using the Haar wavelet approximation. For the most part, this endeavor is made to enlarge the pertinence of the Haar wavelet method to solve a coupled system of time-fractional partial differential equations. As a general rule, piecewise constant approximation of a function at different resolutions is presentational characteristic of Haar wavelet method through which it converts the differential equation into the Sylvester equation that can be further simplified easily. Study of the TFSE is theoretical and experimental research and it also helps in the development of automation science,physics, and engineering as well. Illustratively, several test problems are discussed to draw an effective conclusion, supported by the graphical and tabulated results of included examples, to reveal the proficiency and adaptability of the method.
文摘Objective of our paper is to present the Haar wavelet based solutions of boundary value problems by Haar collocation method and utilizing Quasilinearization technique to resolve quadratic nonlinearity in y. More accurate solutions are obtained by wavelet decomposition in the form of a multiresolution analysis of the function which represents solution of boundary value problems. Through this analysis, solutions are found on the coarse grid points and refined towards higher accuracy by increasing the level of the Haar wavelets. A distinctive feature of the proposed method is its simplicity and applicability for a variety of boundary conditions. Numerical tests are performed to check the applicability and efficiency. C++ program is developed to find the wavelet solution.
基金Supported by the National Natural Science Foundation of China (10674109)the Doctorate Foundation of Northwestern Polytechnical University (CX200601)
文摘An r-adaptive boundary element method(BEM) based on unbalanced Haar wavelets(UBHWs) is developed for solving 2D Laplace equations in which the Galerkin method is used to discretize boundary integral equations.To accelerate the convergence of the adaptive process,the grading function and optimization iteration methods are successively employed.Numerical results of two representative examples clearly show that,first,the combined iteration method can accelerate the convergence;moreover,by using UBHWs,the memory usage for storing the system matrix of the r-adaptive BEM can be reduced by a factor of about 100 for problems with more than 15 thousand unknowns,while the error and convergence property of the original BEM can be retained.