Chilas forest sub division in Diamer district, of Gilgit-Baltistan is located at northern regions of Pakistan. We estimated tree density, diameter, height and volume of the dominant tree species in four blocks (Thore,...Chilas forest sub division in Diamer district, of Gilgit-Baltistan is located at northern regions of Pakistan. We estimated tree density, diameter, height and volume of the dominant tree species in four blocks (Thore, Chilas, Thak Niat and Gunar) of Chilas forest sub division. The tree density of deodar was maximum with average 26 tree·ha-1 and minimum was of Chalgoza 4 trees·ha-1. The maximum average height showed by the dominant species (Fir, Kail, Deodar, and Chilgoza) of the study area to be 20.40, 16.06, 12.24 and 12.12 m respectively. Moreover the average maximum volume attained by the Kail, Fir, Deodar and Chalgoza trees was 1.92, 1.57, 0.46 and 0.291 m3·tree-1 respectively. Regression analysis was carried out to determine the relationship between diameter (cm), height (m), tree density (trees·ha-1) and volume (m3·ha-1). The findings of the study will help the future scientific management of the forest for sustained yield. The study also provides information about the unexplored growing stock and structure of the forests. Additionally, this study will help to understand the patterns of tree species composition and diversity in the northern part of Pakistan with dry temperate climate.展开更多
The present study was aimed to assess the growing stock of Timergara forest subdivision which was a part of Dir lower forest division (Pakistan). The study area was divided into two different climatic zones (i.e. sub-...The present study was aimed to assess the growing stock of Timergara forest subdivision which was a part of Dir lower forest division (Pakistan). The study area was divided into two different climatic zones (i.e. sub-tropical sub humid and sub-humid temperate zones) on the basis of altitudinal considerations. A total of 43 sample plots are taken in the forest area of 8480 hectare with random sampling technique representing 0.5% of the total forest area. Each sample plot size was of one hectare. In each 100 × 100 m (1 ha plot), number of trees, diameter, age, height, increment, form factor and volume were measured. An interrelation between the diameter (independent variable) and all the other dependent variables (volume, increment and height) were found. At the end, volume tables were made which suited the local conditions as the ones used before were not suited to the local conditions.展开更多
Numerous approaches have been developed to quantify forest structure modules.A variety has measured each as part of stand attributes.This study was carried out in managed mixed stands in northern Iran.The objective wa...Numerous approaches have been developed to quantify forest structure modules.A variety has measured each as part of stand attributes.This study was carried out in managed mixed stands in northern Iran.The objective was to quantify stand structure and its variation before and after tree marking through the Gini index and structural triangle method.A full sampling inventory was taken in 2004 and 2014 at the beginning and end of a period,before and after tree marking operations in five stands.The results indicate that the Gini index was 39.5,62.2,43.0,82.0 and 74.0%forⅠ,Ⅱ,Ⅲ,ⅣandⅤstands respectively.Furthermore,approximate structural diameters were determined as a large category forⅠ,Ⅱ,ⅢandⅤstands while standⅡhad an intermediate-large class pre-tree marking to an intermediate-small class post-tree marking.The paired t-test results were not significant for tree numbers and growing stock changes for all species,and for beech,hornbeam,and velvet maple before and after tree harvesting in the whole stand.Therefore,the Gini index and the structural triangle method can be used for natural stand modeling,structural diversity designation,and for management practices in nature-oriented forestry strategies.展开更多
Background:Data on the impact of species diversity on biomass in the Central Himalayas,along with stand structural attributes is sparse and inconsistent.Moreover,few studies in the region have related population struc...Background:Data on the impact of species diversity on biomass in the Central Himalayas,along with stand structural attributes is sparse and inconsistent.Moreover,few studies in the region have related population structure and the influence of large trees on biomass.Such data is crucial for maintaining Himalayan biodiversity and carbon stock.Therefore,we investigated these relationships in major Central Himalayan forest types using nondestructive methodologies to determine key factors and underlying mechanisms.Results:Tropical Shorea robusta dominant forest has the highest total biomass density(1280.79 Mg ha^(−1))and total carbon density(577.77 Mg C ha^(−1))along with the highest total species richness(21 species).The stem density ranged between 153 and 457 trees ha^(−1) with large trees(>70 cm diameter)contributing 0–22%.Conifer dominant forest types had higher median diameter and Cedrus deodara forest had the highest growing stock(718.87 m^(3) ha^(−1));furthermore,C.deodara contributed maximally toward total carbon density(14.6%)among all the 53 species combined.Quercus semecarpifolia–Rhododendron arboreum association forest had the highest total basal area(94.75 m^(2) ha^(−1)).We found large trees to contribute up to 65%of the growing stock.Nine percent of the species contributed more than 50%of the carbon stock.Species dominance regulated the growing stock significantly(R^(2)=0.707,p<0.001).Temperate forest types had heterogeneous biomass distribution within the forest stands.We found total basal area,large tree density,maximum diameter,species richness,and species diversity as the predominant variables with a significant positive influence on biomass carbon stock.Both structural attributes and diversity influenced the ordination of study sites under PCA analysis.Elevation showed no significant correlation with either biomass or species diversity components.Conclusions:The results suggest biomass hyperdominance with both selection effects and niche complementarity to play a complex mechanism in e展开更多
文摘Chilas forest sub division in Diamer district, of Gilgit-Baltistan is located at northern regions of Pakistan. We estimated tree density, diameter, height and volume of the dominant tree species in four blocks (Thore, Chilas, Thak Niat and Gunar) of Chilas forest sub division. The tree density of deodar was maximum with average 26 tree·ha-1 and minimum was of Chalgoza 4 trees·ha-1. The maximum average height showed by the dominant species (Fir, Kail, Deodar, and Chilgoza) of the study area to be 20.40, 16.06, 12.24 and 12.12 m respectively. Moreover the average maximum volume attained by the Kail, Fir, Deodar and Chalgoza trees was 1.92, 1.57, 0.46 and 0.291 m3·tree-1 respectively. Regression analysis was carried out to determine the relationship between diameter (cm), height (m), tree density (trees·ha-1) and volume (m3·ha-1). The findings of the study will help the future scientific management of the forest for sustained yield. The study also provides information about the unexplored growing stock and structure of the forests. Additionally, this study will help to understand the patterns of tree species composition and diversity in the northern part of Pakistan with dry temperate climate.
文摘The present study was aimed to assess the growing stock of Timergara forest subdivision which was a part of Dir lower forest division (Pakistan). The study area was divided into two different climatic zones (i.e. sub-tropical sub humid and sub-humid temperate zones) on the basis of altitudinal considerations. A total of 43 sample plots are taken in the forest area of 8480 hectare with random sampling technique representing 0.5% of the total forest area. Each sample plot size was of one hectare. In each 100 × 100 m (1 ha plot), number of trees, diameter, age, height, increment, form factor and volume were measured. An interrelation between the diameter (independent variable) and all the other dependent variables (volume, increment and height) were found. At the end, volume tables were made which suited the local conditions as the ones used before were not suited to the local conditions.
基金conducted by support of research credit(No:89034)from the University of Tehran
文摘Numerous approaches have been developed to quantify forest structure modules.A variety has measured each as part of stand attributes.This study was carried out in managed mixed stands in northern Iran.The objective was to quantify stand structure and its variation before and after tree marking through the Gini index and structural triangle method.A full sampling inventory was taken in 2004 and 2014 at the beginning and end of a period,before and after tree marking operations in five stands.The results indicate that the Gini index was 39.5,62.2,43.0,82.0 and 74.0%forⅠ,Ⅱ,Ⅲ,ⅣandⅤstands respectively.Furthermore,approximate structural diameters were determined as a large category forⅠ,Ⅱ,ⅢandⅤstands while standⅡhad an intermediate-large class pre-tree marking to an intermediate-small class post-tree marking.The paired t-test results were not significant for tree numbers and growing stock changes for all species,and for beech,hornbeam,and velvet maple before and after tree harvesting in the whole stand.Therefore,the Gini index and the structural triangle method can be used for natural stand modeling,structural diversity designation,and for management practices in nature-oriented forestry strategies.
基金Ratul Baishya acknowledges the complete financial assistance provided by SERB,Govt.of India in the form of a research project(SERB Project:EEQ/2016/000164).Siddhartha Kaushal thanks UGC,Delhi for providing financial assistance in the form of CSIR-UGC JRF.Additional fund received form IOE,University of Delhi as Faculty Research Programme(FRP)grant(2020–2021)is highly acknowledged.
文摘Background:Data on the impact of species diversity on biomass in the Central Himalayas,along with stand structural attributes is sparse and inconsistent.Moreover,few studies in the region have related population structure and the influence of large trees on biomass.Such data is crucial for maintaining Himalayan biodiversity and carbon stock.Therefore,we investigated these relationships in major Central Himalayan forest types using nondestructive methodologies to determine key factors and underlying mechanisms.Results:Tropical Shorea robusta dominant forest has the highest total biomass density(1280.79 Mg ha^(−1))and total carbon density(577.77 Mg C ha^(−1))along with the highest total species richness(21 species).The stem density ranged between 153 and 457 trees ha^(−1) with large trees(>70 cm diameter)contributing 0–22%.Conifer dominant forest types had higher median diameter and Cedrus deodara forest had the highest growing stock(718.87 m^(3) ha^(−1));furthermore,C.deodara contributed maximally toward total carbon density(14.6%)among all the 53 species combined.Quercus semecarpifolia–Rhododendron arboreum association forest had the highest total basal area(94.75 m^(2) ha^(−1)).We found large trees to contribute up to 65%of the growing stock.Nine percent of the species contributed more than 50%of the carbon stock.Species dominance regulated the growing stock significantly(R^(2)=0.707,p<0.001).Temperate forest types had heterogeneous biomass distribution within the forest stands.We found total basal area,large tree density,maximum diameter,species richness,and species diversity as the predominant variables with a significant positive influence on biomass carbon stock.Both structural attributes and diversity influenced the ordination of study sites under PCA analysis.Elevation showed no significant correlation with either biomass or species diversity components.Conclusions:The results suggest biomass hyperdominance with both selection effects and niche complementarity to play a complex mechanism in e