目的为缓解能源危机、综合利用能源、提高能源利用效率,研究太阳能-地源热泵与热网互补供热系统在严寒地区的运行特性.方法建立两种模式的太阳能-地源热泵与热网互补供热系统:模式一为循环流体先进入蓄热水箱;模式二为循环流体先进入地...目的为缓解能源危机、综合利用能源、提高能源利用效率,研究太阳能-地源热泵与热网互补供热系统在严寒地区的运行特性.方法建立两种模式的太阳能-地源热泵与热网互补供热系统:模式一为循环流体先进入蓄热水箱;模式二为循环流体先进入地下埋管换热器,并对系统的运行特性进行对比.以TRNSYS瞬时模拟软件为平台,建立互补供热系统仿真模型,对整个供暖期系统的动态性能进行分析.结果模式一的水箱总蓄热量为134 858 k Wh大于模式二的132 296 k Wh;模式二热泵机组的性能系数(COP)为4.06大于模式一的4.04,模式二的地埋管总换热量为201 149 k W大于模式一的198 571 k Wh.结论热网补热时间集中在12月中旬到次年的2月中旬,而在供暖初期和末期补热需求较少.当以太阳能为主要热源时,可以考虑采用模式一,以确保集热器的高效率,提高集热器集热量;当以地源热泵为主要热源时,模式二可以合理利用太阳能,节省更多的电能.展开更多
A mathematical optimization model was set up for a ground-solar combined system based on in-situ experimental results, in which the solar collector was combined serially with a ground-coupled heat pump (GCHP). The uni...A mathematical optimization model was set up for a ground-solar combined system based on in-situ experimental results, in which the solar collector was combined serially with a ground-coupled heat pump (GCHP). The universal optimal equations were solved by the constrained variable metric method considering both the per-formance and economics. Then the model was applied to a specific case concerning an actual solar assisted GCHP system for space heating. The results indicated a system coefficient of performance (COP) of 3.9 for the optimal method under the serial heating mode, and 3.2 for the conventional one. In addition, the optimum solution also showed advantages in energy and cost saving, leading to a 16.7% improvement in the heat pump performance at 17.2% less energy consumption and 11.8% lower annual cost, respectively.展开更多
The heating performance of a water-to-refrigerant type ground source heat pump system is represented in this paper under the actual working conditions of the GSHP(ground source heat pump) system during the winter seas...The heating performance of a water-to-refrigerant type ground source heat pump system is represented in this paper under the actual working conditions of the GSHP(ground source heat pump) system during the winter season of 2008.Ten heat pump equipments with the capacity of 10 HP each and a closed vertical typed-ground heat exchanger with 24 boreholes of 175 m in depth were constructed.We investigated a variety of working conditions,including the outdoor temperature,the ground temperature,and the water temperature of inlet and outlet of the ground heat exchanger in order to examine the heating performance of the GSHP system.Subsequently,the heating capacity and the input power were investigated to determine the heating performance of the GSHP system.The average heating coefficient of performance(COP) of the heat pump was noted to be 5.1 at partial load of 47%,while the overall system COP was found to be 4.2.Also,performance of the GSHP system was compared with that of air source heat pump.展开更多
This paper presents the heating performance and energy distribution of a system with the combination of ground-source heat pump and solar collector or a solar-assisted ground-source heat pump system (SAGSHPS) by calcu...This paper presents the heating performance and energy distribution of a system with the combination of ground-source heat pump and solar collector or a solar-assisted ground-source heat pump system (SAGSHPS) by calculation and experiment.The results show that the average absolute error is less than 0.6 ℃ and the relative error is less than 5% under the pulse load when the analytical solution to the 2-D solid cylindrical source model is used for the SAGSHPS.The coefficient of performance (COP) of the SAGSHPS is 2.95-4.70.The average fluid temperature in the borehole heat exchanger can increase by 3 ℃ with the assistance of solar collector,which will improve the COP of the heat pump by approximately 10% from the experimental data.The energy contributions to the total heating load of soil,electricity and solar are 56.30%,36.87% and 6.83%,respectively.展开更多
Aimed at unbalance of soil temperature field of ground source heat pump system, solar aided energy storage system was established. In solar assisted ground-source heat pump (SAGSHP) system with soil storage, solar ene...Aimed at unbalance of soil temperature field of ground source heat pump system, solar aided energy storage system was established. In solar assisted ground-source heat pump (SAGSHP) system with soil storage, solar energy collected in three seasons was stored in the soil by vertical U type soil exchangers. The heat abstracted by the ground-source heat pump and collected by the solar collector was employed to heating. Some of the soil heat exchangers were used to store solar energy in the soil so as to be used in next winter after this heating period; and the others were used to extract cooling energy directly in the soil by circulation pump for air conditioning in summer. After that solar energy began to be stored in the soil and ended before heating period. Three dimensional dynamic numerical simulations were built for soil and soil heat exchanger through finite element method. Simulation was done in different strata month by month. Variation and restoration of soil temperature were studied. Economy and reliability of long term SAGSHP system were revealed. It can be seen that soil temperature is about 3 ℃ higher than the original one after one year's running. It is beneficial for the system to operate for long period.展开更多
文摘目的为缓解能源危机、综合利用能源、提高能源利用效率,研究太阳能-地源热泵与热网互补供热系统在严寒地区的运行特性.方法建立两种模式的太阳能-地源热泵与热网互补供热系统:模式一为循环流体先进入蓄热水箱;模式二为循环流体先进入地下埋管换热器,并对系统的运行特性进行对比.以TRNSYS瞬时模拟软件为平台,建立互补供热系统仿真模型,对整个供暖期系统的动态性能进行分析.结果模式一的水箱总蓄热量为134 858 k Wh大于模式二的132 296 k Wh;模式二热泵机组的性能系数(COP)为4.06大于模式一的4.04,模式二的地埋管总换热量为201 149 k W大于模式一的198 571 k Wh.结论热网补热时间集中在12月中旬到次年的2月中旬,而在供暖初期和末期补热需求较少.当以太阳能为主要热源时,可以考虑采用模式一,以确保集热器的高效率,提高集热器集热量;当以地源热泵为主要热源时,模式二可以合理利用太阳能,节省更多的电能.
基金Supported by National Major Project of Scientific and Technical Programs of China During the 11th Five-Year Plan Period (No. 2006BAJ03A06)Tianjin Municipal Project for Science and Technology Development Plan (No. 06YFSYSF03600).
文摘A mathematical optimization model was set up for a ground-solar combined system based on in-situ experimental results, in which the solar collector was combined serially with a ground-coupled heat pump (GCHP). The universal optimal equations were solved by the constrained variable metric method considering both the per-formance and economics. Then the model was applied to a specific case concerning an actual solar assisted GCHP system for space heating. The results indicated a system coefficient of performance (COP) of 3.9 for the optimal method under the serial heating mode, and 3.2 for the conventional one. In addition, the optimum solution also showed advantages in energy and cost saving, leading to a 16.7% improvement in the heat pump performance at 17.2% less energy consumption and 11.8% lower annual cost, respectively.
文摘The heating performance of a water-to-refrigerant type ground source heat pump system is represented in this paper under the actual working conditions of the GSHP(ground source heat pump) system during the winter season of 2008.Ten heat pump equipments with the capacity of 10 HP each and a closed vertical typed-ground heat exchanger with 24 boreholes of 175 m in depth were constructed.We investigated a variety of working conditions,including the outdoor temperature,the ground temperature,and the water temperature of inlet and outlet of the ground heat exchanger in order to examine the heating performance of the GSHP system.Subsequently,the heating capacity and the input power were investigated to determine the heating performance of the GSHP system.The average heating coefficient of performance(COP) of the heat pump was noted to be 5.1 at partial load of 47%,while the overall system COP was found to be 4.2.Also,performance of the GSHP system was compared with that of air source heat pump.
基金Supported by National Natural Science Foundation of China(No.1272263)
文摘This paper presents the heating performance and energy distribution of a system with the combination of ground-source heat pump and solar collector or a solar-assisted ground-source heat pump system (SAGSHPS) by calculation and experiment.The results show that the average absolute error is less than 0.6 ℃ and the relative error is less than 5% under the pulse load when the analytical solution to the 2-D solid cylindrical source model is used for the SAGSHPS.The coefficient of performance (COP) of the SAGSHPS is 2.95-4.70.The average fluid temperature in the borehole heat exchanger can increase by 3 ℃ with the assistance of solar collector,which will improve the COP of the heat pump by approximately 10% from the experimental data.The energy contributions to the total heating load of soil,electricity and solar are 56.30%,36.87% and 6.83%,respectively.
基金Project(GC06A316) supported by the Key Technologies Research and Development Program of Heilongjiang Province, China Project(11531038) supported by the Program of the Educational Commission of Heilongjiang Province of China.
文摘Aimed at unbalance of soil temperature field of ground source heat pump system, solar aided energy storage system was established. In solar assisted ground-source heat pump (SAGSHP) system with soil storage, solar energy collected in three seasons was stored in the soil by vertical U type soil exchangers. The heat abstracted by the ground-source heat pump and collected by the solar collector was employed to heating. Some of the soil heat exchangers were used to store solar energy in the soil so as to be used in next winter after this heating period; and the others were used to extract cooling energy directly in the soil by circulation pump for air conditioning in summer. After that solar energy began to be stored in the soil and ended before heating period. Three dimensional dynamic numerical simulations were built for soil and soil heat exchanger through finite element method. Simulation was done in different strata month by month. Variation and restoration of soil temperature were studied. Economy and reliability of long term SAGSHP system were revealed. It can be seen that soil temperature is about 3 ℃ higher than the original one after one year's running. It is beneficial for the system to operate for long period.