In this paper, a field experiment was carried out to study train-induced environmental vibrations. During the field experiment, velocity responses were measured at different locations of a six-story masonry structure ...In this paper, a field experiment was carried out to study train-induced environmental vibrations. During the field experiment, velocity responses were measured at different locations of a six-story masonry structure near the Beijing- Guangzhou Railway and along a small road adjacent to the building. The results show that the velocity response levels of the environmental ground and the building floors increase with train speed, and attenuate with the distance to the railway track. Heavier freight trains induce greater vibrations than lighter passenger trains. In the multi-story building, the lateral velocity levels increase monotonically with floor elevation, while the vertical ones increase with floor elevation in a fluctuating manner. The indoor floor vibrations are much lower than the outdoor ground vibrations. The lateral vibration of the building along the direction of weak structural stiffness is greater than along the direction with stronger stiffness. A larger room produces greater floor vibrations than the staircase at the same elevation, and the vibration at the center of a room is greater than at its corner. The vibrations of the building were compared with the Federal Transportation Railroad Administration (FTA) criteria for acceptable ground-borne vibrations expressed in terms ofrms velocity levels in decibels. The results show that the train-induced building vibrations are serious, and some exceed the allowance given in relevant criterion.展开更多
Ground motion intensity measure (IM) is an important part in performance-based seismic design. A reasonable and efficient IM can make the prediction of the structural seismic responses more accurate. Therefore, a more...Ground motion intensity measure (IM) is an important part in performance-based seismic design. A reasonable and efficient IM can make the prediction of the structural seismic responses more accurate. Therefore, a more reasonable IM for super high-rise buildings is proposed in this paper. This IM takes into account the significant characteristic that higher-order vibration modes play important roles in the seismic response of super high-rise buildings, as well as the advantages of some existing IMs. The key parameter of the proposed IM is calibrated using a series of time-history analyses. The collapse simulations of two super high-rise buildings are used to discuss the suitability of the proposed IM and some other existing IMs. The results indicate that the proposed IM yields a smaller coefficient of variation for the critical collapse status than other existing IMs and performs well in reflecting the contribution of higher-order vibration modes to the structural response. Hence, the proposed IM is more applicable to seismic design for super high-rise buildings than other IMs.展开更多
基金National Natural Science Foundation of China Under Grant No. 50538010Natural Science Foundation of Beijing Under Grant No. 8082021the Flander (Belgium)-China Bilateral Project Under Grant No. BIL07/07
文摘In this paper, a field experiment was carried out to study train-induced environmental vibrations. During the field experiment, velocity responses were measured at different locations of a six-story masonry structure near the Beijing- Guangzhou Railway and along a small road adjacent to the building. The results show that the velocity response levels of the environmental ground and the building floors increase with train speed, and attenuate with the distance to the railway track. Heavier freight trains induce greater vibrations than lighter passenger trains. In the multi-story building, the lateral velocity levels increase monotonically with floor elevation, while the vertical ones increase with floor elevation in a fluctuating manner. The indoor floor vibrations are much lower than the outdoor ground vibrations. The lateral vibration of the building along the direction of weak structural stiffness is greater than along the direction with stronger stiffness. A larger room produces greater floor vibrations than the staircase at the same elevation, and the vibration at the center of a room is greater than at its corner. The vibrations of the building were compared with the Federal Transportation Railroad Administration (FTA) criteria for acceptable ground-borne vibrations expressed in terms ofrms velocity levels in decibels. The results show that the train-induced building vibrations are serious, and some exceed the allowance given in relevant criterion.
基金supported by "Twelfth Five-Year" plan major projects supported by National Science and Technology (Grant No.2011BAJ09B01)the National Nature Science Foundation of China (Grant Nos. 51222804, 51261120377)+1 种基金the Tsinghua University Initiative Scientific Research Program (Grant Nos. 2012THZ02-2, 2011THZ03) the Fok Ying Dong Education Foundation (Grant No. 131071)
文摘Ground motion intensity measure (IM) is an important part in performance-based seismic design. A reasonable and efficient IM can make the prediction of the structural seismic responses more accurate. Therefore, a more reasonable IM for super high-rise buildings is proposed in this paper. This IM takes into account the significant characteristic that higher-order vibration modes play important roles in the seismic response of super high-rise buildings, as well as the advantages of some existing IMs. The key parameter of the proposed IM is calibrated using a series of time-history analyses. The collapse simulations of two super high-rise buildings are used to discuss the suitability of the proposed IM and some other existing IMs. The results indicate that the proposed IM yields a smaller coefficient of variation for the critical collapse status than other existing IMs and performs well in reflecting the contribution of higher-order vibration modes to the structural response. Hence, the proposed IM is more applicable to seismic design for super high-rise buildings than other IMs.