Butt joining of 5A02 aluminum alloy to 304 stainless steel sheets was conducted using gas tungsten arc welding process with Al-12%Si (wt.%, the same below) and Zn-15%Al flux-cored filler wires. The effects of gap wi...Butt joining of 5A02 aluminum alloy to 304 stainless steel sheets was conducted using gas tungsten arc welding process with Al-12%Si (wt.%, the same below) and Zn-15%Al flux-cored filler wires. The effects of gap width and groove in steel side on the microstructure and tensile strength of the resultant joints were investigated. For the joint made with 0 mm-wide gap and without groove in steel side, severe incomplete brazing zone occurred along the steel side and bottom surfaces, and consequently seriously deteriorated the joint strength. However, presetting 1.5 mm-wide gap or with groove in steel side could promote the wetting of molten filler metal on the laying surfaces, and then significantly enhance the resultant joint strength. Moreover, post-weld heat treatment could further improve the tensile strength of the joints. During tensile testing, the specimens from the joints made with AI-12%Si flux-cored filler wire fractured through the weld or interracial layer, but those from the heat-treated joints made with Zn-15%AI flux-cored filler wire fractured in the aluminum base metal.展开更多
基金supported by the National Natural Science Foundation of China(No.50904012/ E041607)Natural Science Foundation of Liaoning Province(No.20092152)
文摘Butt joining of 5A02 aluminum alloy to 304 stainless steel sheets was conducted using gas tungsten arc welding process with Al-12%Si (wt.%, the same below) and Zn-15%Al flux-cored filler wires. The effects of gap width and groove in steel side on the microstructure and tensile strength of the resultant joints were investigated. For the joint made with 0 mm-wide gap and without groove in steel side, severe incomplete brazing zone occurred along the steel side and bottom surfaces, and consequently seriously deteriorated the joint strength. However, presetting 1.5 mm-wide gap or with groove in steel side could promote the wetting of molten filler metal on the laying surfaces, and then significantly enhance the resultant joint strength. Moreover, post-weld heat treatment could further improve the tensile strength of the joints. During tensile testing, the specimens from the joints made with AI-12%Si flux-cored filler wire fractured through the weld or interracial layer, but those from the heat-treated joints made with Zn-15%AI flux-cored filler wire fractured in the aluminum base metal.