This paper presents a study of a three-row opposed gripping mechanism made of bioinspired spiny toes.An insect Serica orientalis Motschulsky's tarsal system was first described and studied.A compliant single spiny...This paper presents a study of a three-row opposed gripping mechanism made of bioinspired spiny toes.An insect Serica orientalis Motschulsky's tarsal system was first described and studied.A compliant single spiny toe model was established assuming that the contact asperities were spheres.Following the single toe contact model,a spiny toe array's contact model was then developed using asperity height's distribution fiinction.By studying the cngaging and disengaging process of the single toe,the mechanical behavior of the toe and toe array were addressed.The toes as well as the arrays were manufacturcd via rapid prototyping.A customized apparatus using dis-placement-control method has been carried out to measure the pull-in forces and pull-ofT positions of the single toe and toe array undcr various compression conditions.Based on the understanding,a three-row opposed gripping mechanism with radial configuration for wall-climbing robots was designed and fabricated according to the mechanical behaviors of the toe and array.Using an opposed spoke con figuration with 3 rows of 31 toes on each linkage array,the mechanism designed as a foot of climbing robots can vertically resist at least 1 kg of load on rough inverted surface,while the maximum normal load is as high as 31 N.The findings may provide a way in developing a high payload wall-climbing robot system for practical applications.展开更多
To increase the gripping area of noncontact end grippers(NCEGs), an array-type NCEG based on the Coanda mechanism is proposed, and its performance in gripping different garment fabrics(GFs) is studied. Firstly, the st...To increase the gripping area of noncontact end grippers(NCEGs), an array-type NCEG based on the Coanda mechanism is proposed, and its performance in gripping different garment fabrics(GFs) is studied. Firstly, the structure and the working mechanism of a single Coanda-based NCEG were analyzed. Secondly, four such grippers were arranged in array to form a minimum gripping unit. Then, the structure of the connecting plate(CP) to the gripper was optimized by simulation analysis to exclude airflow interference, and the adsorption performance of GFs with different fabric parameters was measured. Finally, the experimental results were analyzed to verify the scientific validity and the feasibility of the array-type arrangement. The results show that compared with other NCEGs, the array-type ones based on the Coanda mechanism are better at gripping various large-area GFs and offer better adsorption performance. This innovation provides a new solution to the problem of insufficient gripping area in GF gripping and is very important for improving the production efficiency of garment processing.展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant No.51605467)the Changzhou Key Laboratory of High Technology(Grant No.CM20183004).
文摘This paper presents a study of a three-row opposed gripping mechanism made of bioinspired spiny toes.An insect Serica orientalis Motschulsky's tarsal system was first described and studied.A compliant single spiny toe model was established assuming that the contact asperities were spheres.Following the single toe contact model,a spiny toe array's contact model was then developed using asperity height's distribution fiinction.By studying the cngaging and disengaging process of the single toe,the mechanical behavior of the toe and toe array were addressed.The toes as well as the arrays were manufacturcd via rapid prototyping.A customized apparatus using dis-placement-control method has been carried out to measure the pull-in forces and pull-ofT positions of the single toe and toe array undcr various compression conditions.Based on the understanding,a three-row opposed gripping mechanism with radial configuration for wall-climbing robots was designed and fabricated according to the mechanical behaviors of the toe and array.Using an opposed spoke con figuration with 3 rows of 31 toes on each linkage array,the mechanism designed as a foot of climbing robots can vertically resist at least 1 kg of load on rough inverted surface,while the maximum normal load is as high as 31 N.The findings may provide a way in developing a high payload wall-climbing robot system for practical applications.
基金National Key Research and Development Program of China (No.2018YFB1308801)。
文摘To increase the gripping area of noncontact end grippers(NCEGs), an array-type NCEG based on the Coanda mechanism is proposed, and its performance in gripping different garment fabrics(GFs) is studied. Firstly, the structure and the working mechanism of a single Coanda-based NCEG were analyzed. Secondly, four such grippers were arranged in array to form a minimum gripping unit. Then, the structure of the connecting plate(CP) to the gripper was optimized by simulation analysis to exclude airflow interference, and the adsorption performance of GFs with different fabric parameters was measured. Finally, the experimental results were analyzed to verify the scientific validity and the feasibility of the array-type arrangement. The results show that compared with other NCEGs, the array-type ones based on the Coanda mechanism are better at gripping various large-area GFs and offer better adsorption performance. This innovation provides a new solution to the problem of insufficient gripping area in GF gripping and is very important for improving the production efficiency of garment processing.