The technique of creep feed grinding is most suitable for geometrical shaping, and therefore has been expected to improve effectively material removal rate and surface quality of components with complex profile. This ...The technique of creep feed grinding is most suitable for geometrical shaping, and therefore has been expected to improve effectively material removal rate and surface quality of components with complex profile. This article studies experimentally the effects of process parameters (i.e. wheel speed, workpiece speed and depth of cut) on the grindability and surface integrity of cast nickel-based superalloys, i.e. K424, during creep feed grinding with brazed cubic boron nitride (CBN) abrasive wheels. Some important factors, such as grinding force and temperature, specific grinding energy, size stability, surface topography, microhardhess and microstructure alteration of the sub-surface, residual stresses, are investigated in detail. The results show that during creep feed grinding with brazed CBN wheels, low grinding temperature at about 100 ℃ is obtained though the specific grinding energy of nickel-based superalloys is high up to 200-300 J/mm^3. A combination of wheel speed 22.5 m/s, workpiece speed 0.1 m/min, depth of cut 0.2 mm accomplishes the straight grooves with the expected dimensional accuracy. Moreover, the compressive residual stresses are formed in the bum-free and crack-free ground surface.展开更多
Surface topography of superalloy GH4169 workpieces machined by milling and grinding is different significantly. Meanwhile, surface roughness, as one of the main indicators of machined surface integrity, has a great in...Surface topography of superalloy GH4169 workpieces machined by milling and grinding is different significantly. Meanwhile, surface roughness, as one of the main indicators of machined surface integrity, has a great influence on the fatigue behavior of workpieces. Based on analyzing the formation mechanism and characteristics of surface roughness utilizing different machining processes and parameters, the machined surface roughness curve can be decoupled into two parts utilizing frequency spectrum analysis, which are kinematic surface roughness curve and stochastic surface roughness curve. The kinematic surface roughness curve is influenced by machining process,parameters, geometry of the cutting tool or wheel, the maximum height of which is expressed as Rz'.By subtracting the kinematic part from the measurement curve, the stochastic surface roughness curve and its maximum height Rz" can be obtained, which is influenced by the defects of cutting tool edge or abrasive grains, built-up edges(BUE), cracks, high frequency vibration and so on. On the other hand, the results of decoupling analysis of surface roughness curves indicate that Raand Rz values of milling GH4169 are 2–5 times and 1–3 times as high as those of grinding, while Rz" value of milling is 13.85%–37.7% as high as that of grinding. According to the results of fatigue life tests of specimens machined by milling and grinding, it can be concluded that fatigue behavior of GH4169 decreases with the increase of Rz"monotonically, even utilizing different machining processes.展开更多
Based on analysis of surface average temperature and burn degree, this article obtains the threshold temperature of surface burn in grinding titanium alloy with cup wheels. Meanwhile, the impact of the burn degree on ...Based on analysis of surface average temperature and burn degree, this article obtains the threshold temperature of surface burn in grinding titanium alloy with cup wheels. Meanwhile, the impact of the burn degree on the metallographic structure of workpiece surface and metallurgical phase transformations is investigated. In order to reduce the grinding temperature and improve the grinding efficiency, a self-inhaling structure cup segmented wheel is developed to generate internal cooling effect. The internal cooling technology is compared with traditional cooling conditions in the grinding experiments on TC4 (Ti-6Al-4V). The results indicate that the self-inhaling internal cooling wheel can reduce the grinding surface temperature by 30% or more, and the grinding efficiency doubles. Utilizing water-based semi-synthetic coolant, the segmented wheel with the self-inhaling structure can further reduce the grinding temperature by about 50%.展开更多
基金National Basic Research Program of China (2009CB724403)Program for Changjiang Scholars and Innovative Research Team in University (IRT0837)Program for New Century Excellent Talents in University from Ministry of Education of China (NCET-07-0435)
文摘The technique of creep feed grinding is most suitable for geometrical shaping, and therefore has been expected to improve effectively material removal rate and surface quality of components with complex profile. This article studies experimentally the effects of process parameters (i.e. wheel speed, workpiece speed and depth of cut) on the grindability and surface integrity of cast nickel-based superalloys, i.e. K424, during creep feed grinding with brazed cubic boron nitride (CBN) abrasive wheels. Some important factors, such as grinding force and temperature, specific grinding energy, size stability, surface topography, microhardhess and microstructure alteration of the sub-surface, residual stresses, are investigated in detail. The results show that during creep feed grinding with brazed CBN wheels, low grinding temperature at about 100 ℃ is obtained though the specific grinding energy of nickel-based superalloys is high up to 200-300 J/mm^3. A combination of wheel speed 22.5 m/s, workpiece speed 0.1 m/min, depth of cut 0.2 mm accomplishes the straight grooves with the expected dimensional accuracy. Moreover, the compressive residual stresses are formed in the bum-free and crack-free ground surface.
基金supported by the Aeronautical Science Foundation of China (No.2016ZE51039)
文摘Surface topography of superalloy GH4169 workpieces machined by milling and grinding is different significantly. Meanwhile, surface roughness, as one of the main indicators of machined surface integrity, has a great influence on the fatigue behavior of workpieces. Based on analyzing the formation mechanism and characteristics of surface roughness utilizing different machining processes and parameters, the machined surface roughness curve can be decoupled into two parts utilizing frequency spectrum analysis, which are kinematic surface roughness curve and stochastic surface roughness curve. The kinematic surface roughness curve is influenced by machining process,parameters, geometry of the cutting tool or wheel, the maximum height of which is expressed as Rz'.By subtracting the kinematic part from the measurement curve, the stochastic surface roughness curve and its maximum height Rz" can be obtained, which is influenced by the defects of cutting tool edge or abrasive grains, built-up edges(BUE), cracks, high frequency vibration and so on. On the other hand, the results of decoupling analysis of surface roughness curves indicate that Raand Rz values of milling GH4169 are 2–5 times and 1–3 times as high as those of grinding, while Rz" value of milling is 13.85%–37.7% as high as that of grinding. According to the results of fatigue life tests of specimens machined by milling and grinding, it can be concluded that fatigue behavior of GH4169 decreases with the increase of Rz"monotonically, even utilizing different machining processes.
基金National Science and Technology Major Project (2009ZX04001-141)Joint Construction Project of Beijing Municipal Commission of Education
文摘Based on analysis of surface average temperature and burn degree, this article obtains the threshold temperature of surface burn in grinding titanium alloy with cup wheels. Meanwhile, the impact of the burn degree on the metallographic structure of workpiece surface and metallurgical phase transformations is investigated. In order to reduce the grinding temperature and improve the grinding efficiency, a self-inhaling structure cup segmented wheel is developed to generate internal cooling effect. The internal cooling technology is compared with traditional cooling conditions in the grinding experiments on TC4 (Ti-6Al-4V). The results indicate that the self-inhaling internal cooling wheel can reduce the grinding surface temperature by 30% or more, and the grinding efficiency doubles. Utilizing water-based semi-synthetic coolant, the segmented wheel with the self-inhaling structure can further reduce the grinding temperature by about 50%.