The Triassic "Green-bean Rock" (GBR) layers were widely recognized around the Early-Middle Triassic boundary interval in the Nanpanjiang Basin, South China. To determine the precise relationship between the GBR la...The Triassic "Green-bean Rock" (GBR) layers were widely recognized around the Early-Middle Triassic boundary interval in the Nanpanjiang Basin, South China. To determine the precise relationship between the GBR layers and the first appearance datum (FAD) of the conodont Chiosella timorensis, four Lower-Middle Triassic sections from the Nanpanjiang Basin, including the Gaimao, Bianyang lI, Zuodeng and Wantou sections have been studied in detail. Detailed conodont biostratigraphy convinces us that there is no exact temporal relationship between the GBR layers and first occurrence of Ch. timorensis. Moreover, the numbers of the GBR layers are different from the place to place within the Nanpanjiang Basin, and the time span of the GBR layers was much longer than previously estimated. Global correlations show that the FAD of Ch. timorensis is contemporaneous basinwide and worldwide and more suitable marker defining the Olenekian-Anisian boundary (Early-Middle Triassic boundary) than any other proxies.展开更多
The felsic volcanogenic tuffs named"green-bean rocks"(GBRs),characterized by a green or yellowish green color,are widely distributed in the western Yangtze platform and have a high lithium content(286-957 pp...The felsic volcanogenic tuffs named"green-bean rocks"(GBRs),characterized by a green or yellowish green color,are widely distributed in the western Yangtze platform and have a high lithium content(286-957 ppm).This paper studies the ages,origin and tectonic setting of the GBRs in the Sichuan basin on the western margin of the Yangtze platform through the whole-rock geochemistry and zircon trace elements by using U-Pb dating and Hf-O isotopes.The GBR samples from the Quxian and Beibei sections yielded zircon U-Pb ages of 245.5±1.8 Ma and 244.8±2.2 Ma.These samples can be used as the isochronous stratigraphic marker of the Early-Middle Triassic boundary(EMTB)for regional correlation.The whole-rock and zircon geochemistry,and zircon Hf-O isotopes exhibited S-type geochemical affinities with high positiveδ^(18)0 values(9.28‰-11.98‰),low negativeε_(Hf)(t)values(-13.87 to-6.79),and T_(DM)^(2)ages of 2150-1703 Ma,indicating that the lithium-rich GBRs were generated by the remelting of the pre-existing ancient Paleoproterozoic layer without mantle source contamination in the arcrelated/orogenic tectonic setting.The results of this study demonstrate that the lithium-rich GBRs in the western Yangtze platform were derived from arc volcanic eruptions along the Sanjiang orogen,triggered by the closure of the eastern Paleo-Tethys Ocean and the syn-collision between the continental Indochina and Yangtze blocks at ca.247 Ma.This was marked by a major shift from I-type magmas with intermediateε_(Hf)(t)values to S-type magmas with low negativeε_(Hf)(t)values.Collectively,our results provide new insights into the origin of the GBRs and decodes the closure of the eastern Paleo-Tethys.展开更多
基金supported by 973 Program (No. 2011CB808800)the Natural Science Foundation of China (Nos. 41172024, 41272044, 41402005)+2 种基金the "111" project (No. B08030)the ‘Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan)the State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (No. GBL11202)
文摘The Triassic "Green-bean Rock" (GBR) layers were widely recognized around the Early-Middle Triassic boundary interval in the Nanpanjiang Basin, South China. To determine the precise relationship between the GBR layers and the first appearance datum (FAD) of the conodont Chiosella timorensis, four Lower-Middle Triassic sections from the Nanpanjiang Basin, including the Gaimao, Bianyang lI, Zuodeng and Wantou sections have been studied in detail. Detailed conodont biostratigraphy convinces us that there is no exact temporal relationship between the GBR layers and first occurrence of Ch. timorensis. Moreover, the numbers of the GBR layers are different from the place to place within the Nanpanjiang Basin, and the time span of the GBR layers was much longer than previously estimated. Global correlations show that the FAD of Ch. timorensis is contemporaneous basinwide and worldwide and more suitable marker defining the Olenekian-Anisian boundary (Early-Middle Triassic boundary) than any other proxies.
基金the Geological Investigation Work project of China Geological Survey(Grant No.DD20190172)the National Key R&D Plan of China(Grant No.2017YFC0602806).
文摘The felsic volcanogenic tuffs named"green-bean rocks"(GBRs),characterized by a green or yellowish green color,are widely distributed in the western Yangtze platform and have a high lithium content(286-957 ppm).This paper studies the ages,origin and tectonic setting of the GBRs in the Sichuan basin on the western margin of the Yangtze platform through the whole-rock geochemistry and zircon trace elements by using U-Pb dating and Hf-O isotopes.The GBR samples from the Quxian and Beibei sections yielded zircon U-Pb ages of 245.5±1.8 Ma and 244.8±2.2 Ma.These samples can be used as the isochronous stratigraphic marker of the Early-Middle Triassic boundary(EMTB)for regional correlation.The whole-rock and zircon geochemistry,and zircon Hf-O isotopes exhibited S-type geochemical affinities with high positiveδ^(18)0 values(9.28‰-11.98‰),low negativeε_(Hf)(t)values(-13.87 to-6.79),and T_(DM)^(2)ages of 2150-1703 Ma,indicating that the lithium-rich GBRs were generated by the remelting of the pre-existing ancient Paleoproterozoic layer without mantle source contamination in the arcrelated/orogenic tectonic setting.The results of this study demonstrate that the lithium-rich GBRs in the western Yangtze platform were derived from arc volcanic eruptions along the Sanjiang orogen,triggered by the closure of the eastern Paleo-Tethys Ocean and the syn-collision between the continental Indochina and Yangtze blocks at ca.247 Ma.This was marked by a major shift from I-type magmas with intermediateε_(Hf)(t)values to S-type magmas with low negativeε_(Hf)(t)values.Collectively,our results provide new insights into the origin of the GBRs and decodes the closure of the eastern Paleo-Tethys.