Gravity is the most important load source in mining and geotechnical engineering,which causes both the stress level and stress gradient inside geomaterials.Different from the stress level,the influence of gravity-indu...Gravity is the most important load source in mining and geotechnical engineering,which causes both the stress level and stress gradient inside geomaterials.Different from the stress level,the influence of gravity-induced stress gradient on the behaviour of the material is still unknown.An in-deep study on it will help to promote the understanding of material behaviour,especially for those cases related to unconventional gravity such as terrestrial ng physical modelling and extraterrestrial resource exploitation(g is the terrestrial gravitational acceleration).In this study,a high-order homogenization for granular materials is proposed at first,in which the stress gradient is drawn into the constitutive representation by adopting a representative volume element(RVE).The consolidation and shear strength behaviour of RVE are then investigated by performing numerical biaxial tests.The results show that all the compressibility,shear strength,shear stiffness,volumetric deformation,and critical state behaviour show a stress gradient dependence.A coupling between stress gradient,stress level,and material properties is also observed.These observations suggest that,besides the stress level,extra attention needs to be paid to material responses related to stress gradient during engineering practices.展开更多
Firstly, a new analytical error model of the cumulative geoid height using the three-dimensional diagonal tensors of satellite gravity gradiometry (SGG) is introduced based on the variance-covariance matrix principl...Firstly, a new analytical error model of the cumulative geoid height using the three-dimensional diagonal tensors of satellite gravity gradiometry (SGG) is introduced based on the variance-covariance matrix principle. Secondly, a study for the requirements demonstration on the next-generation GOCE Follow-On satellite gravity gradiometry system is developed using different satellite orbital altitudes and measurement accuracies of satellite gravity gradiometer by the new analytical error model of SGG. The research results show that it is preferable to design satellite orbital altitudes of 300 km–400km and choose the measurement accuracies of 10-13/s2 –10-15/s2 from satellite gravity gradiometer. Finally, the complementarity of the four-stage satellite gravity missions, including past CHAMP, current GRACE, and GOCE, and next-generation GOCE Follow-On, is contrastively demonstrated for precisely recovering the Earth’s full-frequency gravitational field with high spatial resolution.展开更多
We systematically analyze the quark and gluon gravitational form factors(GFFs)of the proton by connecting the energy-momentum tensor and near-threshold vector meson photoproduction(NTVMP).Specifically,the quark contri...We systematically analyze the quark and gluon gravitational form factors(GFFs)of the proton by connecting the energy-momentum tensor and near-threshold vector meson photoproduction(NTVMP).Specifically,the quark contributions of GFFs are determined by applying global fitting to the cross section of the lightest vector mesonρ0 photoproduction.Combined with the gluon GFFs obtained from heavy quarkonium J/ψphotoproduction data,the complete GFFs are obtained and compared with the experimental results and lattice quantum chromodynamics determinations.In addition,we use the resonance via Padé(RVP)method based on the Schlessinger point method to obtain a model-independent quark D-term distribution through direct analytical continuation of deeply virtual Compton scattering experimental data.If errors are considered,the results obtained with RVP are essentially consistent with those obtained by NTVMP.Moreover,the comprehensive information on GFFs helps to uncover the mass distribution and mechanical properties inside the proton.This study is not only an important basis for delving into the enigmatic properties of the proton,but also has significance for theoretically guiding future JLab and EIC experimental measurements.展开更多
My career as a scientist has been a passionate pursuit of knowledge,objective knowledge devoid of ideology,that could prove useful in understanding and transforming the world.As an engineer,I aimed to produce planning...My career as a scientist has been a passionate pursuit of knowledge,objective knowledge devoid of ideology,that could prove useful in understanding and transforming the world.As an engineer,I aimed to produce planning solutions which would be economically feasible,technically viable,and socially acceptable.Disappointed by the ineffectiveness of methodology and planning initiatives to attain sustainability,I turned to the history of science to find answers,and finally to physics,searching for an explanation of gravity.I traced a path from social to natural sciences.My attachment to my values and ideals,my commitment to my goals costed me dearly.It led me to quit applied research,to move to a desert island in the Atlantic Ocean,to be consumed for years by a Galileo-like obsession.“I must create a system,or be enslaved by another man’s.I will not reason and compare:my business is to create”(Blake,2002,p.210),has been my life’s motto.Have I succeeded in my self-appointed task or have I just wasted valuable years of creative research building sand castles?I don’t have the answer to this question.What I know for sure is that I do not regret hanging to what I thought to be right.展开更多
Based on self-propagating high temperature synthesis (SHS) technology, the ceramic coating with thickness of 2.5mm on the surface of carbon steel and square steel tube was produced under gravity condition. The pha...Based on self-propagating high temperature synthesis (SHS) technology, the ceramic coating with thickness of 2.5mm on the surface of carbon steel and square steel tube was produced under gravity condition. The phase compositions of the coating were determined by X-ray diffractometry. The microstructure of the coating, interfacial structure and hardness between coating and steel body were analyzed by optics microscopy and scanning electron microscopy. The wear resistance of the ceramic coating was investigated. The results show that the combine between ceramic coating and metal base body is firm. There are few air vents and good densification in the coating. Ceramic coating is mainly made up α- Al2O3 base body phase and FeO-Al2O3 spinelle phase. SiO2 exists together with the crystallization quartz phase in the ceramic coating. The hardness(HV 0.2) of composite can reach 1500. The wearability of ceramic coating is eight times higher than that of hardened steel No.45 of HRC50.展开更多
This paper is devoted to the inverse design of strained graphene surfaces for the control of electrons in the semi-classical optical-like regime.Assuming that charge carriers are described by the Dirac equation in cur...This paper is devoted to the inverse design of strained graphene surfaces for the control of electrons in the semi-classical optical-like regime.Assuming that charge carriers are described by the Dirac equation in curved-space and exploiting the fact that wave propagation can be described by ray-optics in this regime,a general computational strategy is proposed in order to find strain fields associated with a desired effective refractive index profile.The latter is first determined by solving semi-classical trajectories and by optimizing a chosen objective functional using a genetic algorithm.Then,the graded refractive index corresponding to the strain field is obtained by using its connection to the metric component in isothermal coordinates.These coordinates are evaluated via numerical quasiconformal transformations by solving the Beltrami equation with a finite volume method.The graphene surface deformation is finally optimized,also using a genetic algorithm,to reproduce the desired index of refraction.Some analytical results and numerical experiments are performed to illustrate the methodology.展开更多
The solutions of the Schrodinger equation with quantum mechanical gravitational potential plus harmonic oscillator potential have been presented using the parametric Nikiforov-Uvarov method. The bound state energy eig...The solutions of the Schrodinger equation with quantum mechanical gravitational potential plus harmonic oscillator potential have been presented using the parametric Nikiforov-Uvarov method. The bound state energy eigen values and the corresponding un-normalized eigen functions are obtained in terms of Laguerre polynomials. Also a special case of the potential has been considered and its energy eigen values are obtained.展开更多
The determination of the gravitational potential of a prism plays an important role in physical geodesy and geophysics. However, there are few literatures that provide accurate approaches for determining the gravitati...The determination of the gravitational potential of a prism plays an important role in physical geodesy and geophysics. However, there are few literatures that provide accurate approaches for determining the gravitational potential of a prism. Discrete element method can be used to determine the gravitational potential of a prism, and can approximate the true gravitational potential values with sufficient accuracy (the smaller each element is, the more accurate the result is). Although Nagy's approach provided a closed expression, one does not know whether it is valid, due to the fact that this approach has not been confirmed in literatures. In this paper, a study on the comparison of Nagy's approach with discrete element method is presented. The results show that Nagy's formulas for determining the gravitational potential of a prism are valid in the domain both inside and outside the prism.展开更多
基金supported by the National Natural Science Foundation of China(Nos.41902273,41772338)the China Postdoctoral Science Foundation(No.2019M661986)+2 种基金the Natural Science Foundation of Jiangsu Province(No.BK20190637)the Jiangsu Planned Projects for Postdoctoral Research Funds(No.2019K194)financial support by the State Key Laboratory for Geomechanics and Deep Underground Engineering,China University of Mining and Technology(Nos.Z19007,Z19009)。
文摘Gravity is the most important load source in mining and geotechnical engineering,which causes both the stress level and stress gradient inside geomaterials.Different from the stress level,the influence of gravity-induced stress gradient on the behaviour of the material is still unknown.An in-deep study on it will help to promote the understanding of material behaviour,especially for those cases related to unconventional gravity such as terrestrial ng physical modelling and extraterrestrial resource exploitation(g is the terrestrial gravitational acceleration).In this study,a high-order homogenization for granular materials is proposed at first,in which the stress gradient is drawn into the constitutive representation by adopting a representative volume element(RVE).The consolidation and shear strength behaviour of RVE are then investigated by performing numerical biaxial tests.The results show that all the compressibility,shear strength,shear stiffness,volumetric deformation,and critical state behaviour show a stress gradient dependence.A coupling between stress gradient,stress level,and material properties is also observed.These observations suggest that,besides the stress level,extra attention needs to be paid to material responses related to stress gradient during engineering practices.
基金Project supported by the Main Direction Program of Knowledge Innovation of Chinese Academy of Sciences for Distinguished Young Scholar (Grant No. KZCX2-EW-QN114)the National Natural Science Foundation of China for Young Scholar (Grant Nos. 41004006, 41131067, 11173049, and 41202094)+5 种基金the Merit-based Scientific Research Foundation of the State Ministry of Human Resources and Social Security of China for Returned Overseas Chinese Scholars(Grant No. 2011)the Open Research Fund Program of the Key Laboratory of Computational Geodynamics of Chinese Academy of Sciences (Grant No. 2011-04)the Open Research Fund Program of the Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, China (Grant No. 11-01-02)the Open Research Fund Program of the Key Laboratory of Geo-Informatics of National Administration of Surveying, Mapping and Geoinformation of China(Grant No. 201322)the Open Fund of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Grant No. PLN1113)the Foundation of State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing (Grant No. PRP/open-1206)
文摘Firstly, a new analytical error model of the cumulative geoid height using the three-dimensional diagonal tensors of satellite gravity gradiometry (SGG) is introduced based on the variance-covariance matrix principle. Secondly, a study for the requirements demonstration on the next-generation GOCE Follow-On satellite gravity gradiometry system is developed using different satellite orbital altitudes and measurement accuracies of satellite gravity gradiometer by the new analytical error model of SGG. The research results show that it is preferable to design satellite orbital altitudes of 300 km–400km and choose the measurement accuracies of 10-13/s2 –10-15/s2 from satellite gravity gradiometer. Finally, the complementarity of the four-stage satellite gravity missions, including past CHAMP, current GRACE, and GOCE, and next-generation GOCE Follow-On, is contrastively demonstrated for precisely recovering the Earth’s full-frequency gravitational field with high spatial resolution.
基金Supported by the National Natural Science Foundation of China(12065014,12247101)the Natural Science Foundation of Gansu province(22JR5RA266)We acknowledge the West Light Foundation of the Chinese Academy of Sciences(21JR7RA201)。
文摘We systematically analyze the quark and gluon gravitational form factors(GFFs)of the proton by connecting the energy-momentum tensor and near-threshold vector meson photoproduction(NTVMP).Specifically,the quark contributions of GFFs are determined by applying global fitting to the cross section of the lightest vector mesonρ0 photoproduction.Combined with the gluon GFFs obtained from heavy quarkonium J/ψphotoproduction data,the complete GFFs are obtained and compared with the experimental results and lattice quantum chromodynamics determinations.In addition,we use the resonance via Padé(RVP)method based on the Schlessinger point method to obtain a model-independent quark D-term distribution through direct analytical continuation of deeply virtual Compton scattering experimental data.If errors are considered,the results obtained with RVP are essentially consistent with those obtained by NTVMP.Moreover,the comprehensive information on GFFs helps to uncover the mass distribution and mechanical properties inside the proton.This study is not only an important basis for delving into the enigmatic properties of the proton,but also has significance for theoretically guiding future JLab and EIC experimental measurements.
文摘My career as a scientist has been a passionate pursuit of knowledge,objective knowledge devoid of ideology,that could prove useful in understanding and transforming the world.As an engineer,I aimed to produce planning solutions which would be economically feasible,technically viable,and socially acceptable.Disappointed by the ineffectiveness of methodology and planning initiatives to attain sustainability,I turned to the history of science to find answers,and finally to physics,searching for an explanation of gravity.I traced a path from social to natural sciences.My attachment to my values and ideals,my commitment to my goals costed me dearly.It led me to quit applied research,to move to a desert island in the Atlantic Ocean,to be consumed for years by a Galileo-like obsession.“I must create a system,or be enslaved by another man’s.I will not reason and compare:my business is to create”(Blake,2002,p.210),has been my life’s motto.Have I succeeded in my self-appointed task or have I just wasted valuable years of creative research building sand castles?I don’t have the answer to this question.What I know for sure is that I do not regret hanging to what I thought to be right.
文摘Based on self-propagating high temperature synthesis (SHS) technology, the ceramic coating with thickness of 2.5mm on the surface of carbon steel and square steel tube was produced under gravity condition. The phase compositions of the coating were determined by X-ray diffractometry. The microstructure of the coating, interfacial structure and hardness between coating and steel body were analyzed by optics microscopy and scanning electron microscopy. The wear resistance of the ceramic coating was investigated. The results show that the combine between ceramic coating and metal base body is firm. There are few air vents and good densification in the coating. Ceramic coating is mainly made up α- Al2O3 base body phase and FeO-Al2O3 spinelle phase. SiO2 exists together with the crystallization quartz phase in the ceramic coating. The hardness(HV 0.2) of composite can reach 1500. The wearability of ceramic coating is eight times higher than that of hardened steel No.45 of HRC50.
文摘This paper is devoted to the inverse design of strained graphene surfaces for the control of electrons in the semi-classical optical-like regime.Assuming that charge carriers are described by the Dirac equation in curved-space and exploiting the fact that wave propagation can be described by ray-optics in this regime,a general computational strategy is proposed in order to find strain fields associated with a desired effective refractive index profile.The latter is first determined by solving semi-classical trajectories and by optimizing a chosen objective functional using a genetic algorithm.Then,the graded refractive index corresponding to the strain field is obtained by using its connection to the metric component in isothermal coordinates.These coordinates are evaluated via numerical quasiconformal transformations by solving the Beltrami equation with a finite volume method.The graphene surface deformation is finally optimized,also using a genetic algorithm,to reproduce the desired index of refraction.Some analytical results and numerical experiments are performed to illustrate the methodology.
文摘The solutions of the Schrodinger equation with quantum mechanical gravitational potential plus harmonic oscillator potential have been presented using the parametric Nikiforov-Uvarov method. The bound state energy eigen values and the corresponding un-normalized eigen functions are obtained in terms of Laguerre polynomials. Also a special case of the potential has been considered and its energy eigen values are obtained.
基金Supported by the National Natural Science Foundation of China (No.40637034, 40974015)the National 863 Program of China (No.2006AA12Z211)
文摘The determination of the gravitational potential of a prism plays an important role in physical geodesy and geophysics. However, there are few literatures that provide accurate approaches for determining the gravitational potential of a prism. Discrete element method can be used to determine the gravitational potential of a prism, and can approximate the true gravitational potential values with sufficient accuracy (the smaller each element is, the more accurate the result is). Although Nagy's approach provided a closed expression, one does not know whether it is valid, due to the fact that this approach has not been confirmed in literatures. In this paper, a study on the comparison of Nagy's approach with discrete element method is presented. The results show that Nagy's formulas for determining the gravitational potential of a prism are valid in the domain both inside and outside the prism.