The large-aperture pulse compression grating(PCG) is a critical component in generating an ultra-high-intensity, ultra-short-pulse laser;however, the size of the PCG manufactured by transmission holographic exposure i...The large-aperture pulse compression grating(PCG) is a critical component in generating an ultra-high-intensity, ultra-short-pulse laser;however, the size of the PCG manufactured by transmission holographic exposure is limited to large-scale high-quality materials. The reflective method is a potential way for solving the size limitation, but there is still no successful precedent due to the lack of scientific specifications and advanced processing technology of exposure mirrors. In this paper, an analytical model is developed to clarify the specifications of components, and advanced processing technology is adopted to control the spatial frequency errors. Hereafter, we have successfully fabricated a multilayer dielectric grating of 200 mm × 150 mm by using an off-axis reflective exposure system with Φ300 mm. This demonstration proves that PCGs can be manufactured by using the reflection holographic exposure method and shows the potential for manufacturing the meter-level gratings used in 100 petawatt class high-power lasers.展开更多
The miniaturization of nonlinear light sources is central to the integrated photonic platform,driving a quest for high-efficiency frequency generation and mixing at the nanoscale.In this quest,the high-quality(Q)reson...The miniaturization of nonlinear light sources is central to the integrated photonic platform,driving a quest for high-efficiency frequency generation and mixing at the nanoscale.In this quest,the high-quality(Q)resonant dielectric nanostructures hold great promise,as they enhance nonlinear effects through the resonantly local electromagnetic fields overlapping the chosen nonlinear materials.Here,we propose a method for the enhanced sum-frequency generation(SFG)from etcheless lithium niobate(LiNbO_(3))by utilizing the dual quasi-bound states in the continuum(quasi-BICs)in a one-dimensional resonant grating waveguide structure.Two high-Q guided mode resonances corresponding to the dual quasi-BICs are respectively excited by two near-infrared input beams,generating a strong visible SFG signal with a remarkably high conversion efficiency of 3.66×10^(-2)(five orders of magnitude higher than that of LiNbO_(3)films of the same thickness)and a small full-width at half-maximum less than 0.2 nm.The SFG efficiency can be tuned via adjusting the grating geometry parameter or choosing the input beam polarization combination.Furthermore,the generated SFG signal can be maintained at a fixed wavelength without the appreciable loss of efficiency by selectively exciting the angle-dependent quasi-BICs,even if the wavelengths of input beams are tuned within a broad spectral range.Our results provide a simple but robust paradigm of high-efficiency frequency conversion on an easy-fabricated platform,which may find applications in nonlinear light sources and quantum photonics.展开更多
Frequency modulation(FM)-to-amplitude modulation(AM) conversion is an important factor that affects the time±power curve of inertial confinement fusion(ICF) high-power laser facilities. This conversion can impact...Frequency modulation(FM)-to-amplitude modulation(AM) conversion is an important factor that affects the time±power curve of inertial confinement fusion(ICF) high-power laser facilities. This conversion can impact uniform compression and increase the risk of damage to optics. However, the dispersive grating used in the smoothing by spectral dispersion technology will introduce a temporal delay and can spatially smooth the target. The combined effect of the dispersive grating and the focusing lens is equivalent to a Gaussian low-pass filter, which is equivalent to 8 GHz bandwidth and can reduce the intensity modulation on the target to below 5% with 0.3 nm @ 3 GHz + 20 GHz spectrum phase modulation. The results play an important role in the testing and evaluating of the FM-to-AM on the final optics and the target, which is beneficial for comprehensively evaluating the load capacity of the facility and isentropic compression experiment for ICF.展开更多
Chromium atom photolithography gratings are a promising technology for the development of nanoscale length standard substances due to their high accuracy,uniformity,and consistency.However,the inherent difference betw...Chromium atom photolithography gratings are a promising technology for the development of nanoscale length standard substances due to their high accuracy,uniformity,and consistency.However,the inherent difference between the interaction of positive and negative frequency detuning standing wave field and the atoms can cause a difference in the adjacent peak-to-valley heights of the grating in positive and negative frequency detuning chromium atom lithography,which greatly reduces its accuracy.In this study,we performed a controlled variable growth simulation using the semi-classical theoretical model and Monte Carlo method with trajectory tracking and ballistic deposition methods to investigate the influence of key experimental parameters on the surface growth process of positive and negative frequency detuning atomic lithography gratings.We established a theoretical model based on simulation results and summarized empirical equations to guide the selection of experimental parameters.Our simulations achieved uniform positive and negative frequency detuning atomic lithography gratings with a period of 1/4 of the wavelength corresponding to the atomic transition frequency,and adjacent peak-to-valley heights differing by no more than 2 nm,providing an important theoretical reference for the controllable fabrication of these gratings.展开更多
Fatigue behaviour has important implications for engineering composite structures in sectors ranging from automotive to aerospace. Optical sensing technology displays excellent performance in these fields for monitori...Fatigue behaviour has important implications for engineering composite structures in sectors ranging from automotive to aerospace. Optical sensing technology displays excellent performance in these fields for monitoring. In this paper, temperature and residual strain during fatigue of a carbon fiber reinforced polymer(CFRP) are investigated. Four autoclaved CFRP beam specimens, with fiber Bragg grating(FBG) sensors and thermocouples embedded at selected locations, are subjected to three-point bending cyclic loading on the BOSE testing machine for fatigue testing. Thennocouples are used to measure the temperature while FBGs can sense the temperature and strain as well. Seven tests in total are conducted at different frequencies, and each test lasts for several days. From the experimental results, transient steep peaks of temperature increases (up to 2.3℃) are discovered at the beginning of the load. The following constant temperature increments are around 1.0℃, which is not relevant to frequencies from 0.1 Hz to 20 Hz and suspected due to fatigue. Residual strains of 1×10^-5-2×10^-5 during fatigue, fading away rapidly when unloading, are also reported. Embedded FBGs here are validated to sense temperature and strains in composite structures, which demonstrates promising potentials in structure monitoring fields. CFRP are verified to have an excellent performance during fatigue with low temperature increase and residual strain.展开更多
基金supported by the National Key R&D Program of China(2020YFA0714500)the National Natural Science Youth Foundation of China(62205352)+5 种基金the Member of Youth Innovation Promotion Association of the Chinese Academy of Sciencesthe International Partnership Program of the Chinese Academy of Sciences(181231KYSB20200040)the Chinese Academy of Sciences President’s International Fellowship Initiative(2023VMB0008)the Shanghai Sailing Program(20YF1454800)the Natural Science Foundation of Shanghai(21ZR1472000)the Shanghai Strategic Emerging Industry Development Special Fund(31011442501217020191D3101001)。
文摘The large-aperture pulse compression grating(PCG) is a critical component in generating an ultra-high-intensity, ultra-short-pulse laser;however, the size of the PCG manufactured by transmission holographic exposure is limited to large-scale high-quality materials. The reflective method is a potential way for solving the size limitation, but there is still no successful precedent due to the lack of scientific specifications and advanced processing technology of exposure mirrors. In this paper, an analytical model is developed to clarify the specifications of components, and advanced processing technology is adopted to control the spatial frequency errors. Hereafter, we have successfully fabricated a multilayer dielectric grating of 200 mm × 150 mm by using an off-axis reflective exposure system with Φ300 mm. This demonstration proves that PCGs can be manufactured by using the reflection holographic exposure method and shows the potential for manufacturing the meter-level gratings used in 100 petawatt class high-power lasers.
基金supported by the National Natural Science Foundation of China(Grant Nos.12104105,12264028,12304420,and 12364045)the Natural Science Foundation of Jiangxi Province(Grant Nos.20232BAB201040,and 20232BAB211025)+6 种基金the Chenguang Program of Shanghai Education Development FoundationShanghai Municipal Education Commission(Grant No.21CGA55)the Guangdong Basic and Applied Basic Research Foundation(Grant No.2023A1515011024)the Science and Technology Program of Guangzhou(Grant No.202201011176)the Interdisciplinary Innovation Fund of Nanchang University(Grant No.2019-9166-27060003)the Start-up Funding of Guangdong Polytechnic Normal University(Grant No.2021SDKYA033)the China Scholarship Council(Grant No.202008420045)。
文摘The miniaturization of nonlinear light sources is central to the integrated photonic platform,driving a quest for high-efficiency frequency generation and mixing at the nanoscale.In this quest,the high-quality(Q)resonant dielectric nanostructures hold great promise,as they enhance nonlinear effects through the resonantly local electromagnetic fields overlapping the chosen nonlinear materials.Here,we propose a method for the enhanced sum-frequency generation(SFG)from etcheless lithium niobate(LiNbO_(3))by utilizing the dual quasi-bound states in the continuum(quasi-BICs)in a one-dimensional resonant grating waveguide structure.Two high-Q guided mode resonances corresponding to the dual quasi-BICs are respectively excited by two near-infrared input beams,generating a strong visible SFG signal with a remarkably high conversion efficiency of 3.66×10^(-2)(five orders of magnitude higher than that of LiNbO_(3)films of the same thickness)and a small full-width at half-maximum less than 0.2 nm.The SFG efficiency can be tuned via adjusting the grating geometry parameter or choosing the input beam polarization combination.Furthermore,the generated SFG signal can be maintained at a fixed wavelength without the appreciable loss of efficiency by selectively exciting the angle-dependent quasi-BICs,even if the wavelengths of input beams are tuned within a broad spectral range.Our results provide a simple but robust paradigm of high-efficiency frequency conversion on an easy-fabricated platform,which may find applications in nonlinear light sources and quantum photonics.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (No.XDA25020303)。
文摘Frequency modulation(FM)-to-amplitude modulation(AM) conversion is an important factor that affects the time±power curve of inertial confinement fusion(ICF) high-power laser facilities. This conversion can impact uniform compression and increase the risk of damage to optics. However, the dispersive grating used in the smoothing by spectral dispersion technology will introduce a temporal delay and can spatially smooth the target. The combined effect of the dispersive grating and the focusing lens is equivalent to a Gaussian low-pass filter, which is equivalent to 8 GHz bandwidth and can reduce the intensity modulation on the target to below 5% with 0.3 nm @ 3 GHz + 20 GHz spectrum phase modulation. The results play an important role in the testing and evaluating of the FM-to-AM on the final optics and the target, which is beneficial for comprehensively evaluating the load capacity of the facility and isentropic compression experiment for ICF.
基金Project supported by the National Natural Science Foundation of China(Grant No.62075165)the National Key Research and Development Program of China(Grant Nos.2022YFF0607600 and 2022YFF0605502)+3 种基金the Special Development Funds for Major Projects of Shanghai Zhangjiang National Independent Innovation Demonstration Zone(Grant No.ZJ2021ZD008)the Shanghai Natural Science Foundation(Grant No.21ZR1483100)the Shanghai Academic/Technology Research Leader(Grant No.21XD1425000)the Opening Fund of Shanghai Key Laboratory of Online Detection and Control Technology(Grant No.ZX2020101)。
文摘Chromium atom photolithography gratings are a promising technology for the development of nanoscale length standard substances due to their high accuracy,uniformity,and consistency.However,the inherent difference between the interaction of positive and negative frequency detuning standing wave field and the atoms can cause a difference in the adjacent peak-to-valley heights of the grating in positive and negative frequency detuning chromium atom lithography,which greatly reduces its accuracy.In this study,we performed a controlled variable growth simulation using the semi-classical theoretical model and Monte Carlo method with trajectory tracking and ballistic deposition methods to investigate the influence of key experimental parameters on the surface growth process of positive and negative frequency detuning atomic lithography gratings.We established a theoretical model based on simulation results and summarized empirical equations to guide the selection of experimental parameters.Our simulations achieved uniform positive and negative frequency detuning atomic lithography gratings with a period of 1/4 of the wavelength corresponding to the atomic transition frequency,and adjacent peak-to-valley heights differing by no more than 2 nm,providing an important theoretical reference for the controllable fabrication of these gratings.
文摘Fatigue behaviour has important implications for engineering composite structures in sectors ranging from automotive to aerospace. Optical sensing technology displays excellent performance in these fields for monitoring. In this paper, temperature and residual strain during fatigue of a carbon fiber reinforced polymer(CFRP) are investigated. Four autoclaved CFRP beam specimens, with fiber Bragg grating(FBG) sensors and thermocouples embedded at selected locations, are subjected to three-point bending cyclic loading on the BOSE testing machine for fatigue testing. Thennocouples are used to measure the temperature while FBGs can sense the temperature and strain as well. Seven tests in total are conducted at different frequencies, and each test lasts for several days. From the experimental results, transient steep peaks of temperature increases (up to 2.3℃) are discovered at the beginning of the load. The following constant temperature increments are around 1.0℃, which is not relevant to frequencies from 0.1 Hz to 20 Hz and suspected due to fatigue. Residual strains of 1×10^-5-2×10^-5 during fatigue, fading away rapidly when unloading, are also reported. Embedded FBGs here are validated to sense temperature and strains in composite structures, which demonstrates promising potentials in structure monitoring fields. CFRP are verified to have an excellent performance during fatigue with low temperature increase and residual strain.