The high-density gravitational collapse of granular columns is very similar to the movements of large collapsing columns in nature. Based on the development of dangerous columnar rock mass in fields, granular column c...The high-density gravitational collapse of granular columns is very similar to the movements of large collapsing columns in nature. Based on the development of dangerous columnar rock mass in fields, granular column collapse boundary condition in the physical experiments of this study is a new type of boundary conditions with a single free face and a three-dimensional deposit. Physical experiments have shown that the mobility of small particles during the collapse of granular columns was greater than that of large particles. For example, when particle size was increased from 5 to 15 mm, deposit runout was decreased by about 16.4%. When a column consisted of two particle types with different sizes, these particles could mix in the vicinity of layer interfaces and small particles might increase the mobility of large particles. In the process of collapse, potential and kinetic energy conversion rate is fluctuated. By increasing initial aspect ratio a, the ratio of the initial height of column to its length along flow direction,potential and kinetic energy conversion rate is decreased. For example, as a was increased from 0.5 to 4, the ratio of maximum kinetic energy obtained and total potential energy loss was decreased from47.6% to 7.4%. After movement stopped, an almost trapezoidal body remained in the column and a fanlike or fan-shaped accumulation was formed on the periphery of column. Using multiple exponential functions of the aspect ratio a, the planar morphology of the collapse deposit of granular columns could be quantitatively characterized. The movement of pillar dangerous rock masses with collapse failure mode could be evaluated using this granular column experimental results.展开更多
It is difficult to collect and characterise well-preserved samples of weakly-cemented granular rocks as conventional sampling techniques often result in destruction of the cementation.An alternative approach is to pre...It is difficult to collect and characterise well-preserved samples of weakly-cemented granular rocks as conventional sampling techniques often result in destruction of the cementation.An alternative approach is to prepare synthetic geomaterials to match required specifications.This paper introduces microbially induced carbonate precipitation(MICP)as a method to reliably deliver artificiallycemented specimens with customised properties,closely resembling those of soft carbonate sandstones.The specimens are generated from materials with two highly different particle size distributions(PSDs)to access a range of achievable combinations of strengths and porosities.The MICP parameters are kept constant across all samples to obtain similar calcium carbonate characteristics(size of individual crystals,type,etc.),while injected volume is varied to achieve different cementation levels.Although uniform cementation of very coarse sands has been considered very difficult to achieve,the results show that both the fine and coarse sand specimens present high degrees of uniformity and a good degree of repeatability.The unconfined compressive strengths(UCSs)(less than 3000 kPa)and porosities(0.25e0.4)of the artificial specimens fall in the same range of values reported for natural rocks.The strength gainwas greater in the fine sand than that in the coarse sand,as the void size in the latter was significantly larger compared to the calcium carbonate crystals’size,resulting in precipitation on less effective locations,away from contacts between particles.The strengths and porosities obtained for the two sands in this work fall within ranges reported in the literature for natural soft rocks,demonstrating theMICP technique is able to achieve realistic properties and may be used to produce a full range of properties by varying the grain sizes,and possibly the width of PSD.展开更多
Rock shed is an effective protection measure against rockfall.To investigate the influences of falling rock’s shape and impact angle on the impact effect of the cushioned rock shed,a modeling approach for a rock shed...Rock shed is an effective protection measure against rockfall.To investigate the influences of falling rock’s shape and impact angle on the impact effect of the cushioned rock shed,a modeling approach for a rock shed with a cushion layer using PFC-FLAC.The granular cushion is modeled as an aggregate of discrete non-cohesion particles,while the concrete plate and the beam are modeled as zones.The falling rock with different sphericities and impact angles is modeled as a rigid assembly.The numerical model is validated by comparing the simulation results with experimental and numerical results from previous literature.This model is applied to analyze the effects of rock shape and impact angle on the dynamic interaction effects between falling rock and cushioned rock shed,including the impact force,transmitted bottom force,penetration depth,and plate deflection.The numerical results show that the variation in the falling rock’s shape has different effects on the falling rock with different impact angles.These findings could support rock shed design by revealing the limitations of the assumptions in the past research,which may result in unsafe rock sheds for some rockfall cases.展开更多
In rock-fill dams of 200 to 300 m high, maximum compressive stress can exceed 6 MPa. At such a high stress level, rock-fill materials may experience particle crushing during shear. The material behavior is highly soph...In rock-fill dams of 200 to 300 m high, maximum compressive stress can exceed 6 MPa. At such a high stress level, rock-fill materials may experience particle crushing during shear. The material behavior is highly sophisticated exhibiting pressure and density dependency as well as particle crushing effects. Through scrutinizing the relevant experimental data on rock-fill materials and sands published in the literatures, this paper is focused on understanding basic mechanical characteristics of this sort of materials in the light of constitutive modelling.展开更多
基金supported by National Key R&D Program of China (Nos 2018YFC1504803, 2018YFC1504806)Geological Hazard Prevention and Control Project for Follow-Up Work of the Three Gorges Project (Nos. 001212019CC60001,0001212018CC60008)
文摘The high-density gravitational collapse of granular columns is very similar to the movements of large collapsing columns in nature. Based on the development of dangerous columnar rock mass in fields, granular column collapse boundary condition in the physical experiments of this study is a new type of boundary conditions with a single free face and a three-dimensional deposit. Physical experiments have shown that the mobility of small particles during the collapse of granular columns was greater than that of large particles. For example, when particle size was increased from 5 to 15 mm, deposit runout was decreased by about 16.4%. When a column consisted of two particle types with different sizes, these particles could mix in the vicinity of layer interfaces and small particles might increase the mobility of large particles. In the process of collapse, potential and kinetic energy conversion rate is fluctuated. By increasing initial aspect ratio a, the ratio of the initial height of column to its length along flow direction,potential and kinetic energy conversion rate is decreased. For example, as a was increased from 0.5 to 4, the ratio of maximum kinetic energy obtained and total potential energy loss was decreased from47.6% to 7.4%. After movement stopped, an almost trapezoidal body remained in the column and a fanlike or fan-shaped accumulation was formed on the periphery of column. Using multiple exponential functions of the aspect ratio a, the planar morphology of the collapse deposit of granular columns could be quantitatively characterized. The movement of pillar dangerous rock masses with collapse failure mode could be evaluated using this granular column experimental results.
文摘It is difficult to collect and characterise well-preserved samples of weakly-cemented granular rocks as conventional sampling techniques often result in destruction of the cementation.An alternative approach is to prepare synthetic geomaterials to match required specifications.This paper introduces microbially induced carbonate precipitation(MICP)as a method to reliably deliver artificiallycemented specimens with customised properties,closely resembling those of soft carbonate sandstones.The specimens are generated from materials with two highly different particle size distributions(PSDs)to access a range of achievable combinations of strengths and porosities.The MICP parameters are kept constant across all samples to obtain similar calcium carbonate characteristics(size of individual crystals,type,etc.),while injected volume is varied to achieve different cementation levels.Although uniform cementation of very coarse sands has been considered very difficult to achieve,the results show that both the fine and coarse sand specimens present high degrees of uniformity and a good degree of repeatability.The unconfined compressive strengths(UCSs)(less than 3000 kPa)and porosities(0.25e0.4)of the artificial specimens fall in the same range of values reported for natural rocks.The strength gainwas greater in the fine sand than that in the coarse sand,as the void size in the latter was significantly larger compared to the calcium carbonate crystals’size,resulting in precipitation on less effective locations,away from contacts between particles.The strengths and porosities obtained for the two sands in this work fall within ranges reported in the literature for natural soft rocks,demonstrating theMICP technique is able to achieve realistic properties and may be used to produce a full range of properties by varying the grain sizes,and possibly the width of PSD.
基金supported by the National Natural Science Foundation of China(Grant Nos.41941017 and U1702241).
文摘Rock shed is an effective protection measure against rockfall.To investigate the influences of falling rock’s shape and impact angle on the impact effect of the cushioned rock shed,a modeling approach for a rock shed with a cushion layer using PFC-FLAC.The granular cushion is modeled as an aggregate of discrete non-cohesion particles,while the concrete plate and the beam are modeled as zones.The falling rock with different sphericities and impact angles is modeled as a rigid assembly.The numerical model is validated by comparing the simulation results with experimental and numerical results from previous literature.This model is applied to analyze the effects of rock shape and impact angle on the dynamic interaction effects between falling rock and cushioned rock shed,including the impact force,transmitted bottom force,penetration depth,and plate deflection.The numerical results show that the variation in the falling rock’s shape has different effects on the falling rock with different impact angles.These findings could support rock shed design by revealing the limitations of the assumptions in the past research,which may result in unsafe rock sheds for some rockfall cases.
基金Supported by the National Basic Research Program of China (Grant Nos. 2007CB714100, 2007CB714103)
文摘In rock-fill dams of 200 to 300 m high, maximum compressive stress can exceed 6 MPa. At such a high stress level, rock-fill materials may experience particle crushing during shear. The material behavior is highly sophisticated exhibiting pressure and density dependency as well as particle crushing effects. Through scrutinizing the relevant experimental data on rock-fill materials and sands published in the literatures, this paper is focused on understanding basic mechanical characteristics of this sort of materials in the light of constitutive modelling.