Besides leaves, non-foliar green organs such as stem and spike are also considered photosynthetic organs. To assess the photosynthetic contributions of these organs, the correlations between these photosynthetic areas...Besides leaves, non-foliar green organs such as stem and spike are also considered photosynthetic organs. To assess the photosynthetic contributions of these organs, the correlations between these photosynthetic areas and single-spike weight were investigated in a winter wheat(Triticum aestivum L.) under four nitrogen and mulching treatments: N120,N150, N195, and N195 + M. Two-year repeated field experiments were conducted on the Loess Plateau of China. Non-foliar photosynthetic area, grain-filling ratio and duration,grain yield, and in particular, single-spike weight, were measured, recorded and analyzed.Under the N195 + M treatment, plants showed the largest area of photosynthetic organs(flag leaf and non-foliar organs) and the highest grain yield and single spike weight. Singlespike weight was positively correlated with the areas of all examined non-foliar photosynthetic organs, in particular with the area above the flag leaf node(R^2= 0.761*)and the area above the exposed part of the peduncle(EXP)(R^2= 0.800**). In addition, singlespike weight was highly correlated with average grain-filling ratio(R^2= 0.993**), whereas it was less highly correlated with grain-filling duration(R^2= 0.533). The morphological traits of non-foliar photosynthetic organs were also more highly correlated with average grainfilling ratio than with average grain-filling duration. The significant correlation between each of the morphological traits(area, length and width) of EXP and single-spike weight indicates that morphological traits of EXP are important in determining spike weight in the Loess Plateau environment.展开更多
Grain filling is the physiological process for determining the obtainment of yield in cereal crops.The grain-filling characteristics of 50 maize brand hybrids released from 1964 to 2014 in China were assayed across mu...Grain filling is the physiological process for determining the obtainment of yield in cereal crops.The grain-filling characteristics of 50 maize brand hybrids released from 1964 to 2014 in China were assayed across multiple environments.We found that the grain-filling duration(54.46%)and rate(43.40%)at the effective grain-filling phase greatly contributed to the final performance parameter of 100-kernel weight(HKW).Meanwhile,along with the significant increase in HKW,the accumulated growing degree days(GDDs)for the actual grain-filling period duration(AFPD)among the selected brand hybrids released from the 1960s to the 2010s in China had a decadal increase of 23.41℃ d.However,there was a decadal increase of only 19.76℃ d for GDDs of the days from sowing to physiological maturity(DPM),which was also demonstrated by a continuous decrease in the ratio between the days from sowing to silking(DS)and DPM(i.e.,from 53.24%in the 1960s to 49.78%in the 2010s).In contrast,there were no significant changes in grain-filling rate along with the release years of the selected hybrids.Moreover,the stability of grain-filling characteristics across environments also significantly increased along with the hybrid release years.We also found that the exotic hybrids showed a longer grain-filling duration at the effective grain-filling phase and more stability of the grain-filling characteristics than those of the Chinese local hybrids.According to the results of this study,it is expected that the relatively longer grain-filling duration,shorter DS,higher grain-filling rate,and steady grain-filling characteristics would contribute to the yield improvement of maize hybrids in the future.展开更多
基金the financial support of the National Basic Research Program of China (2015CB150402)National Natural Science Foundation of China (51479189)+1 种基金Open Foundation of State Key Laboratory, Institute of Water and Soil Conservation, Chinese Academy of Sciences, Ministry of Water Resources (A314021402-1610)Key Research Foundation of Baoji University of Arts and Sciences (ZK16066)
文摘Besides leaves, non-foliar green organs such as stem and spike are also considered photosynthetic organs. To assess the photosynthetic contributions of these organs, the correlations between these photosynthetic areas and single-spike weight were investigated in a winter wheat(Triticum aestivum L.) under four nitrogen and mulching treatments: N120,N150, N195, and N195 + M. Two-year repeated field experiments were conducted on the Loess Plateau of China. Non-foliar photosynthetic area, grain-filling ratio and duration,grain yield, and in particular, single-spike weight, were measured, recorded and analyzed.Under the N195 + M treatment, plants showed the largest area of photosynthetic organs(flag leaf and non-foliar organs) and the highest grain yield and single spike weight. Singlespike weight was positively correlated with the areas of all examined non-foliar photosynthetic organs, in particular with the area above the flag leaf node(R^2= 0.761*)and the area above the exposed part of the peduncle(EXP)(R^2= 0.800**). In addition, singlespike weight was highly correlated with average grain-filling ratio(R^2= 0.993**), whereas it was less highly correlated with grain-filling duration(R^2= 0.533). The morphological traits of non-foliar photosynthetic organs were also more highly correlated with average grainfilling ratio than with average grain-filling duration. The significant correlation between each of the morphological traits(area, length and width) of EXP and single-spike weight indicates that morphological traits of EXP are important in determining spike weight in the Loess Plateau environment.
基金partly supported by the National Key R&D Program of China(2016YFD0100303 and 2016YFD0100103)the Fundamental Research Funds for Central Non-Profit of Institute of Crop Sciences,Chinese Academy of Agricultural Sciences(Y2020YJ09 and CAAS-ZDRW202109)the Agricultural Science and Technology Innovation Program,China(ASTIP)。
文摘Grain filling is the physiological process for determining the obtainment of yield in cereal crops.The grain-filling characteristics of 50 maize brand hybrids released from 1964 to 2014 in China were assayed across multiple environments.We found that the grain-filling duration(54.46%)and rate(43.40%)at the effective grain-filling phase greatly contributed to the final performance parameter of 100-kernel weight(HKW).Meanwhile,along with the significant increase in HKW,the accumulated growing degree days(GDDs)for the actual grain-filling period duration(AFPD)among the selected brand hybrids released from the 1960s to the 2010s in China had a decadal increase of 23.41℃ d.However,there was a decadal increase of only 19.76℃ d for GDDs of the days from sowing to physiological maturity(DPM),which was also demonstrated by a continuous decrease in the ratio between the days from sowing to silking(DS)and DPM(i.e.,from 53.24%in the 1960s to 49.78%in the 2010s).In contrast,there were no significant changes in grain-filling rate along with the release years of the selected hybrids.Moreover,the stability of grain-filling characteristics across environments also significantly increased along with the hybrid release years.We also found that the exotic hybrids showed a longer grain-filling duration at the effective grain-filling phase and more stability of the grain-filling characteristics than those of the Chinese local hybrids.According to the results of this study,it is expected that the relatively longer grain-filling duration,shorter DS,higher grain-filling rate,and steady grain-filling characteristics would contribute to the yield improvement of maize hybrids in the future.