Lagrangian and Eulerian statistics are obtained from the direct numerical simulation of a turbulent channel flow. The Reynolds number is obtained to be Reτ = 100 (based on friction velocity and channel half-height)...Lagrangian and Eulerian statistics are obtained from the direct numerical simulation of a turbulent channel flow. The Reynolds number is obtained to be Reτ = 100 (based on friction velocity and channel half-height). The Lagrangian time microscales are compared to their Eulerian equivalents. It is found that the Lagrangian time microscales equal the Eulerian time microscales at the wall, but they are consistently larger than the Eulerian away from the wall. The Eulerian time scales are also found to be scaled by the propagation velocity rather than the mean velocity. The ratio of the Lagrangian to the Eulerian time microscales is found to be nearly constant away from the wall (y^+ 〉 40).展开更多
For simulating water wave propagation in coastal areas, various Boussinesq-type equations with improved properties in intermediate or deep water have been presented in the past several decades. How to choose proper Bo...For simulating water wave propagation in coastal areas, various Boussinesq-type equations with improved properties in intermediate or deep water have been presented in the past several decades. How to choose proper Boussinesq-type equations has been a practical problem for engineers. In this paper, approaches of improving the characteristics of the equations, i.e. linear dispersion, shoaling gradient and nonlinearity, are reviewed and the advantages and disadvantages of several different Boussinesq-type equations are compared for the applications of these Boussinesq-type equations in coastal engineering with relatively large sea areas. Then for improving the properties of Boussinesq-type equations, a new set of fully nonlinear Boussinseq-type equations with modified representative velocity are derived, which can be used for better linear dispersion and nonlinearity. Based on the method of minimizing the overall error in different ranges of applications, sets of parameters are determined with optimized linear dispersion, linear shoaling and nonlinearity, respectively. Finally, a test example is given for validating the results of this study. Both results show that the equations with optimized parameters display better characteristics than the ones obtained by matching with pad6 approximation.展开更多
A wide variety of techniques for the preparation of sperm are currently available, of which the most commonly employed are densitygradient centrifugation (DGC) and swim-up (SUP). To date, these methods appear to b...A wide variety of techniques for the preparation of sperm are currently available, of which the most commonly employed are densitygradient centrifugation (DGC) and swim-up (SUP). To date, these methods appear to be effective in selecting functional sperm for assisted reproduction techniques (ART), but they may have negative effects on sperm DNA. In this study, the ability of these semen processing techniques to eliminate spermatozoa containing single- and double-strand DNA damage was assessed by the two-tailed comet assay and the sperm chromatin dispersion test in 157 semen samples from patients seeking assisted reproduction treatment. Our results indicated that SUP and DGC are equally efficient in eliminating spermatozoa containing double-strand DNA damage and sperm with highly damaged (degraded) DNA, as characterized by the presence of both single- and double-strand DNA breaks. However, DGC is more efficient than SUP in selecting spermatozoa that are free from single-strand DNA damage. Future studies should characterise the importance of the various types of DNA damage and examine the sperm processing protocols used in each laboratory to determine their ability to eliminate DNA damage and hence, prevent the potential transmission of genetic mutations via ART.展开更多
We have proposed an"exact"strain gradient(SG)continuum model to properly predict the dispersive characteristics of diatomic lattice metamaterials with local and nonlocal interactions.The key enhancement is p...We have proposed an"exact"strain gradient(SG)continuum model to properly predict the dispersive characteristics of diatomic lattice metamaterials with local and nonlocal interactions.The key enhancement is proposing a wavelength-dependent Taylor expansion to obtain a satisfactory accuracy when the wavelength gets close to the lattice spacing.Such a wavelength-dependent Taylor expansion is applied to the displacement field of the diatomic lattice,resulting in a novel SG model.For various kinds of diatomic lattices,the dispersion diagrams given by the proposed SG model always agree well with those given by the discrete model throughout the first Brillouin zone,manifesting the robustness of the present model.Based on this SG model,we have conducted the following discussions.(Ⅰ)Both mass and stiffness ratios affect the band gap structures of diatomic lattice metamaterials,which is very helpful for the design of metamaterials.(Ⅱ)The increase in the SG order can enhance the model performance if the modified Taylor expansion is adopted.Without doing so,the higher-order continuum model can suffer from a stronger instability issue and does not necessarily have a better accuracy.The proposed SG continuum model with the eighth-order truncation is found to be enough to capture the dispersion behaviors all over the first Brillouin zone.(Ⅲ)The effects of the nonlocal interactions are analyzed.The nonlocal interactions reduce the workable range of the well-known long-wave approximation,causing more local extrema in the dispersive diagrams.The present model can serve as a satisfactory continuum theory when the wavelength gets close to the lattice spacing,i.e.,when the long-wave approximation is no longer valid.For the convenience of band gap designs,we have also provided the design space from which one can easily obtain the proper mass and stiffness ratios corresponding to a requested band gap width.展开更多
文摘Lagrangian and Eulerian statistics are obtained from the direct numerical simulation of a turbulent channel flow. The Reynolds number is obtained to be Reτ = 100 (based on friction velocity and channel half-height). The Lagrangian time microscales are compared to their Eulerian equivalents. It is found that the Lagrangian time microscales equal the Eulerian time microscales at the wall, but they are consistently larger than the Eulerian away from the wall. The Eulerian time scales are also found to be scaled by the propagation velocity rather than the mean velocity. The ratio of the Lagrangian to the Eulerian time microscales is found to be nearly constant away from the wall (y^+ 〉 40).
基金financially supported by the National Science and Technology Support Program of China(Grant No.2010BAC68B04)
文摘For simulating water wave propagation in coastal areas, various Boussinesq-type equations with improved properties in intermediate or deep water have been presented in the past several decades. How to choose proper Boussinesq-type equations has been a practical problem for engineers. In this paper, approaches of improving the characteristics of the equations, i.e. linear dispersion, shoaling gradient and nonlinearity, are reviewed and the advantages and disadvantages of several different Boussinesq-type equations are compared for the applications of these Boussinesq-type equations in coastal engineering with relatively large sea areas. Then for improving the properties of Boussinesq-type equations, a new set of fully nonlinear Boussinseq-type equations with modified representative velocity are derived, which can be used for better linear dispersion and nonlinearity. Based on the method of minimizing the overall error in different ranges of applications, sets of parameters are determined with optimized linear dispersion, linear shoaling and nonlinearity, respectively. Finally, a test example is given for validating the results of this study. Both results show that the equations with optimized parameters display better characteristics than the ones obtained by matching with pad6 approximation.
文摘A wide variety of techniques for the preparation of sperm are currently available, of which the most commonly employed are densitygradient centrifugation (DGC) and swim-up (SUP). To date, these methods appear to be effective in selecting functional sperm for assisted reproduction techniques (ART), but they may have negative effects on sperm DNA. In this study, the ability of these semen processing techniques to eliminate spermatozoa containing single- and double-strand DNA damage was assessed by the two-tailed comet assay and the sperm chromatin dispersion test in 157 semen samples from patients seeking assisted reproduction treatment. Our results indicated that SUP and DGC are equally efficient in eliminating spermatozoa containing double-strand DNA damage and sperm with highly damaged (degraded) DNA, as characterized by the presence of both single- and double-strand DNA breaks. However, DGC is more efficient than SUP in selecting spermatozoa that are free from single-strand DNA damage. Future studies should characterise the importance of the various types of DNA damage and examine the sperm processing protocols used in each laboratory to determine their ability to eliminate DNA damage and hence, prevent the potential transmission of genetic mutations via ART.
基金Project supported by the National Natural Science Foundation of China(Nos.11972174 and 11672119)。
文摘We have proposed an"exact"strain gradient(SG)continuum model to properly predict the dispersive characteristics of diatomic lattice metamaterials with local and nonlocal interactions.The key enhancement is proposing a wavelength-dependent Taylor expansion to obtain a satisfactory accuracy when the wavelength gets close to the lattice spacing.Such a wavelength-dependent Taylor expansion is applied to the displacement field of the diatomic lattice,resulting in a novel SG model.For various kinds of diatomic lattices,the dispersion diagrams given by the proposed SG model always agree well with those given by the discrete model throughout the first Brillouin zone,manifesting the robustness of the present model.Based on this SG model,we have conducted the following discussions.(Ⅰ)Both mass and stiffness ratios affect the band gap structures of diatomic lattice metamaterials,which is very helpful for the design of metamaterials.(Ⅱ)The increase in the SG order can enhance the model performance if the modified Taylor expansion is adopted.Without doing so,the higher-order continuum model can suffer from a stronger instability issue and does not necessarily have a better accuracy.The proposed SG continuum model with the eighth-order truncation is found to be enough to capture the dispersion behaviors all over the first Brillouin zone.(Ⅲ)The effects of the nonlocal interactions are analyzed.The nonlocal interactions reduce the workable range of the well-known long-wave approximation,causing more local extrema in the dispersive diagrams.The present model can serve as a satisfactory continuum theory when the wavelength gets close to the lattice spacing,i.e.,when the long-wave approximation is no longer valid.For the convenience of band gap designs,we have also provided the design space from which one can easily obtain the proper mass and stiffness ratios corresponding to a requested band gap width.