采用一维弹塑性流体动力学计算方法,通过对LLNL(Lawrence Livermore National Laboratory)Mg-Cu体系密度梯度飞片冲击加载-准等熵加载实验过程数值计算和比较,验证了流体动力学计算方法、不同材料体系混合模型以及计算程序的正确性和实...采用一维弹塑性流体动力学计算方法,通过对LLNL(Lawrence Livermore National Laboratory)Mg-Cu体系密度梯度飞片冲击加载-准等熵加载实验过程数值计算和比较,验证了流体动力学计算方法、不同材料体系混合模型以及计算程序的正确性和实用性。考虑到在飞片材料制备中,单层厚度最小值为0.2 mm和Mg-W最大阻抗混合质量分数的致密条件限制,开展了对新的Mg-W体系密度梯度飞片实现冲击加载-准等熵加载过程计算设计,给出了满足加载要求的飞片结构特征;从计算给出的粒子速度波剖面可见,密度梯度飞片波阻抗分布对加载过程和加载强度非常敏感,通过精心设计准连续型变阻抗的梯度飞片,可以进行不同复杂加/卸载过程的物理模型设计和实验研究。展开更多
We present the processes and results of a numerical investigation of the bismuth unloading solidification by a graded density impactor, and demonstrate that the physical process may be realized due to bismuth abnormal...We present the processes and results of a numerical investigation of the bismuth unloading solidification by a graded density impactor, and demonstrate that the physical process may be realized due to bismuth abnormal melting characteristics. A more reasonable high-pressure solid equation of state of the fifth phase bismuth is introduced in our calculation and one type of graded density impactor made of 15 compositions of Mg-Cu material system is given in this paper. We detailedly investigate one possible proposed approach to achieve the unloading solidification physical process, and our numerical analysis on the thermodynamic state, the unloading path and the phase transformations.展开更多
文摘采用一维弹塑性流体动力学计算方法,通过对LLNL(Lawrence Livermore National Laboratory)Mg-Cu体系密度梯度飞片冲击加载-准等熵加载实验过程数值计算和比较,验证了流体动力学计算方法、不同材料体系混合模型以及计算程序的正确性和实用性。考虑到在飞片材料制备中,单层厚度最小值为0.2 mm和Mg-W最大阻抗混合质量分数的致密条件限制,开展了对新的Mg-W体系密度梯度飞片实现冲击加载-准等熵加载过程计算设计,给出了满足加载要求的飞片结构特征;从计算给出的粒子速度波剖面可见,密度梯度飞片波阻抗分布对加载过程和加载强度非常敏感,通过精心设计准连续型变阻抗的梯度飞片,可以进行不同复杂加/卸载过程的物理模型设计和实验研究。
文摘We present the processes and results of a numerical investigation of the bismuth unloading solidification by a graded density impactor, and demonstrate that the physical process may be realized due to bismuth abnormal melting characteristics. A more reasonable high-pressure solid equation of state of the fifth phase bismuth is introduced in our calculation and one type of graded density impactor made of 15 compositions of Mg-Cu material system is given in this paper. We detailedly investigate one possible proposed approach to achieve the unloading solidification physical process, and our numerical analysis on the thermodynamic state, the unloading path and the phase transformations.