Neuron cell are built from a myriad of axon and denddte structures. It transmits electrochemical signals between the brain and the nervous system. Three-dimensional visualization of neuron structure could help to faci...Neuron cell are built from a myriad of axon and denddte structures. It transmits electrochemical signals between the brain and the nervous system. Three-dimensional visualization of neuron structure could help to facilitate deeper understanding of neuron and its models. An accurate neuron model could aid understanding of brain's functionalities, diagnosis and knowledge of entire nervous system. Existing neuron models have been found to be defective in the aspect of realism. Whereas in the actual biological neuron, there is continuous growth as the soma extending to the axon and the dendrite; but, the current neuron visualization models present it as disjointed segments that has greatly mediated effective realism. In this research, a new reconstruction model comprising of the Bounding Cylinder, Curve Interpolation and Gouraud Shading is proposed to visualize neuron model in order to improve realism. The reconstructed model is used to design algorithms for generating neuron branching from neuron SWC data. The Bounding Cylinder and Curve Interpolation methods are used to improve the connected segments of the neuron model using a series of cascaded cylinders along the neuron's connection path. Three control points are proposed between two adjacent neuron segments. Finally, the model is rendered with Gouraud Shading for smoothening of the model surface. This produce a near-perfection model of the natural neurons with attended realism. The model is validated by a group of bioinformatics analysts' responses to a predefined survey. The result shows about 82% acceptance and satisfaction rate.展开更多
Computing moments on images is very important in the fields of image processing and pattern recognition. The non-symmetry and anti-packing model (NAM) is a general pattern representation model that has been develope...Computing moments on images is very important in the fields of image processing and pattern recognition. The non-symmetry and anti-packing model (NAM) is a general pattern representation model that has been developed to help design some efficient image representation methods. In this paper, inspired by the idea of computing moments based on the S-Tree coding (STC) representation and by using the NAM and extended shading (NAMES) approach, we propose a fast algorithm for computing lower order moments based on the NAMES representation, which takes O(N) time where N is the number of NAM blocks. By taking three idiomatic standard gray images 'Lena', 'F16', and 'Peppers' in tile field of image processing as typical test objects, and by comparing our proposed algorithm with the conventional algorithm and the popular STC representation algorithm for computing the lower order moments, the theoretical and experimental results presented in this paper show that the average execution time improvement ratios of the proposed NAMES approach over the STC approach, and also the conventional approach are 26.63%, and 82.57% respectively while maintaining the image quality.展开更多
基金supported by UTMVicubeLab at Department of Computer Graphics and Multimedia, Faculty of Computer Science and Information System, University Technology MalaysiaSpecial thanks to Ministry of Science and Technology Innovation for providing financial support for this research
文摘Neuron cell are built from a myriad of axon and denddte structures. It transmits electrochemical signals between the brain and the nervous system. Three-dimensional visualization of neuron structure could help to facilitate deeper understanding of neuron and its models. An accurate neuron model could aid understanding of brain's functionalities, diagnosis and knowledge of entire nervous system. Existing neuron models have been found to be defective in the aspect of realism. Whereas in the actual biological neuron, there is continuous growth as the soma extending to the axon and the dendrite; but, the current neuron visualization models present it as disjointed segments that has greatly mediated effective realism. In this research, a new reconstruction model comprising of the Bounding Cylinder, Curve Interpolation and Gouraud Shading is proposed to visualize neuron model in order to improve realism. The reconstructed model is used to design algorithms for generating neuron branching from neuron SWC data. The Bounding Cylinder and Curve Interpolation methods are used to improve the connected segments of the neuron model using a series of cascaded cylinders along the neuron's connection path. Three control points are proposed between two adjacent neuron segments. Finally, the model is rendered with Gouraud Shading for smoothening of the model surface. This produce a near-perfection model of the natural neurons with attended realism. The model is validated by a group of bioinformatics analysts' responses to a predefined survey. The result shows about 82% acceptance and satisfaction rate.
文摘Computing moments on images is very important in the fields of image processing and pattern recognition. The non-symmetry and anti-packing model (NAM) is a general pattern representation model that has been developed to help design some efficient image representation methods. In this paper, inspired by the idea of computing moments based on the S-Tree coding (STC) representation and by using the NAM and extended shading (NAMES) approach, we propose a fast algorithm for computing lower order moments based on the NAMES representation, which takes O(N) time where N is the number of NAM blocks. By taking three idiomatic standard gray images 'Lena', 'F16', and 'Peppers' in tile field of image processing as typical test objects, and by comparing our proposed algorithm with the conventional algorithm and the popular STC representation algorithm for computing the lower order moments, the theoretical and experimental results presented in this paper show that the average execution time improvement ratios of the proposed NAMES approach over the STC approach, and also the conventional approach are 26.63%, and 82.57% respectively while maintaining the image quality.