The Gonghe Basin,a Cenozoic down-warped basin,is located in the northeastern part of the Qinghai-Xizang (Tibetan) Plateau,and spread over important nodes of the transfer of multiple blocks in the central orogenic belt...The Gonghe Basin,a Cenozoic down-warped basin,is located in the northeastern part of the Qinghai-Xizang (Tibetan) Plateau,and spread over important nodes of the transfer of multiple blocks in the central orogenic belt in the NWW direction.It is also called “Qin Kun Fork” and “Gonghe Gap”.The basin has a high heat flow value and obvious thermal anomaly.The geothermal resources are mainly hot dry rock and underground hot water.In recent years,the mechanism of geothermal formation within the basin has been controversial.On the basis of understanding the knowledge of predecessors,this paper proposes the geothermal formation mechanism of the “heat source–heat transfer–heat reservoir and caprock–thermal system”of the Gonghe Basin from the perspective of a geological background through data integrationintegrated research-expert,discussion-graph,compilation-field verification and other processes: (1) Heat source: geophysical exploration and radioisotope calculations show that the heat source of heat in the basin has both the contribution of mantle and the participation of the earth's crust,but mainly the contribution of the deep mantle.(2) Heat transfer: The petrological properties of the basin and the exposed structure position of the surface hot springs show that one transfer mode is the material of the mantle source upwells and invades from the bottom,directly injecting heat;the other is that the deep fault conducts the deep heat of the basin to the middle and lower parts of the earth's crust,then the secondary fracture transfers the heat to the shallow part.(3) Heat reservoir and caprock: First,the convective strip-shaped heat reservoir exposed by the hot springs on the peripheral fault zone of the basin;second,the underlying hot dry rock layered heat reservoir and the upper new generation heat reservoir and caprock in the basin revealed by drilling data.(4) Thermal system: Based on the characteristics of the “heat source-heat transfer-heat reservoir and caprock”,it is preliminarily believed tha展开更多
Using gradually regression analysis to establish the driving force model of utilized change of cultivated land in Gonghe County, and using path analysis, correlation analysis, partial correlation analysis and system d...Using gradually regression analysis to establish the driving force model of utilized change of cultivated land in Gonghe County, and using path analysis, correlation analysis, partial correlation analysis and system dynamics method to inspect the effect of driving changing on cultivated land change under different change situations. Driving factors, action mechanism and process of utilized change of cultivated land were analyzed from the county territory scale level. At last, some corresponding policies and measures were put forward.展开更多
Hot dry rock(HDR)is a kind of clean energy with significant potential.Since the 1970s,the United States,Japan,France,Australia,and other countries have attempted to conduct several HDR development research projects to...Hot dry rock(HDR)is a kind of clean energy with significant potential.Since the 1970s,the United States,Japan,France,Australia,and other countries have attempted to conduct several HDR development research projects to extract thermal energy by breaking through key technologies.However,up to now,the development of HDR is still in the research,development,and demonstration stage.An HDR exploration borehole(with 236℃ at a depth of 3705 m)was drilled into Triassic granite in the Gonghe Basin in northwest China in 2017.Subsequently,China Geological Survey(CGS)launched the HDR resources exploration and production demonstration project in 2019.After three years of efforts,a sequence of significant technological breakthroughs have been made,including the genetic model of deep heat sources,directional drilling and well completion in high-temperature hard rock,large-scale reservoir stimulation,reservoir characterization,and productivity evaluation,reservoir connectivity and flow circulation,efficient thermoelectric conversion,monitoring,and geological risk assessment,etc.Then the whole-process technological system for HDR exploration and production has been preliminarily established accordingly.The first power generation test was completed in November 2021.The results of this project will provide scientific support for HDR development and utilization in the future.展开更多
Changes in the status of freshwater resources are a topic of major global, regional and local concern. This is especially so in the arid and semi-arid regions of China, where shortage of water resources plays a crucia...Changes in the status of freshwater resources are a topic of major global, regional and local concern. This is especially so in the arid and semi-arid regions of China, where shortage of water resources plays a crucial role in limiting sustainable socioeconomic development, as well as in sustaining natural ecosystems. Recent climate change, as well as the effects of localized human activity, such as the use of water for irrigation agriculture, may have significant effects on the status of the water resources in the region. Here, we report the results of a study of changes in the areas of lakes in Gonghe Basin, northeastern Tibetan Plateau of China, over the last 60 years. The data were acquired from optical satellite images and demonstrate that the total water area of lakes in Gonghe Basin decreased significantly from the 1950s to 1980s. The cause is ascribed mainly to human activity including exploitation of farmland, against a background of increasing population; in addition, climatic data for the region demonstrate a minor drying trend during this period as the temperature increased slightly. After the construction of several reservoirs, significant amounts of water were redistributed to promote irrigation agriculture and we conclude that this caused a significant shrinkage of the natural lakes. However, both the area of farmland and the population size remained approximately constant after 1990. We conclude that the variation of the total area of lakes during the second period was mainly controlled by climatic factors (precipitation and temperature). As the regional temperature reached a new high, the area of some of the lakes decreased sharply before finally maintaining a relatively steady state. We emphasize that anthropogenic climate change and human activity have both significantly influenced the status of water resources in the arid and semi-arid regions of China.展开更多
With the analysis of the sources and formation mechanism of the clay minerals in the sediment core from the Dalianhai lake in the Gonghe Basin,northeastern Tibet-Qinghai Plateau,clay mineral composition proxies,grain-...With the analysis of the sources and formation mechanism of the clay minerals in the sediment core from the Dalianhai lake in the Gonghe Basin,northeastern Tibet-Qinghai Plateau,clay mineral composition proxies,grain-size and carbonate contents have been employed for high-resolution study in order to reconstruct East Asian Summer Monsoon (EASM) over the northeastern Tibet-Qinghai Plateau during the lastdeglacial.The study also extended to establish a relationship between vegetation cover changes and erosion during the last 14.5 ka with pollen record and clay mineral proxies.Smectite/kaolinite and smectite/(illite+chlorite) ratios allow us to assess hydrolysis conditions in lowlands and/or physical erosion process in highlands of the Gonghe Basin.Before 12.9 Cal ka BP,both mineralogical ratios show low values indicative of strong physical erosion in the basin with a dominant cold and dry phase.After 12.9 Cal ka BP,an increase in both mineralogical ratios indicates enhanced chemical weathering in the basin associated with a warm and humid climate.The beginning of Holocene is characterized by high smectite/(illite+chlorite) and smectite/kaolinite ratios that is synchronous as with deposition of many peat laminae,implying the best warm and humid conditions specifically between 8.0 to 5.5 Cal ka BP.The time interval after 5.0 Cai ka BP is characterized by a return to high physical erosion and low chemical weathering with dry climate conditions in the basin.Comparing variations of clay mineral assemblages with previous pollen results,we observe a rapid response in terms of chemical weathering and physical erosion intensity to a modification of the vegetation cover in the basin.展开更多
An earthquake of Ms= 6, 9 occurred at the Gonghe, Qinghai Province, China on April 26, 1990. Three larger aftershocks took place at the same region, Ms= 5. 0 on May 7, 1990, Ms= 6. 0 on Jan. 3, 1994 and Ms= 5. 7on Feb...An earthquake of Ms= 6, 9 occurred at the Gonghe, Qinghai Province, China on April 26, 1990. Three larger aftershocks took place at the same region, Ms= 5. 0 on May 7, 1990, Ms= 6. 0 on Jan. 3, 1994 and Ms= 5. 7on Feb. 16, 1994. The long-period recordings of the main shock from China Digital Seismograph Network (CDSN) are deconvolved for the source time functions by the correspondent0 recordings of the three aftershocks asempirical Green's functions (EGFs). No matter which aftershock is taken as EGF, the relative source time functions (RSTFs) Obtained are nearly identical. The RSTFs suggest the Ms= 6. 9 event consists of at least two subevents with approximately equal size whose occurrence times are about 30 s apart, the first one has a duration of 12 s and a rise time of about 5 s, and the second one has a duration of 17 s and a rise time of about & s. COmParing the RSTFs obtained from P- and SH-phases respectively, we notice that those from SH-phases are a slightly more complex than those from p-phases, implying other finer subevents exist during the process of the main shock. It is interesting that the results from the EGF deconvolution of long-Period way form data are in good agreement with the results from the moment tensor inversion and from the EGF deconvolution of broadband waveform data. Additionally, the two larger aftershocks are deconvolved for their RSTFs. The deconvolution results show that the processes of the Ms= 6. 0 event on Jan. 3, 1994 and the Ms= 5. 7 event on Feb. 16,1994 are quite simple, both RSTFs are single impulses.The RSTFs of the Ms= 6. 9 main shock obtained from different stations are noticed to be azimuthally dependent, whose shapes are a slightly different with different stations. However, the RSTFs of the two smaller aftershocks are not azimuthally dependent. The integrations of RSTFs over the processes are quite close to each other, i. e., the scalar seismic moments estimated from different stations are in good agreement. Finally the scalar seismic moments of the three aft展开更多
The northeastern Qinghai-Tibetan Plateau(QTP) of China is located at the triple junction of the Asian winter and summer monsoons and the westerlies, where paleoclimatic evolution has an important scientific significan...The northeastern Qinghai-Tibetan Plateau(QTP) of China is located at the triple junction of the Asian winter and summer monsoons and the westerlies, where paleoclimatic evolution has an important scientific significance for recognizing the spatial-temporal pattern of Asian monsoons in the past and predicting environmental change in the future. Nevertheless, the framework of the Holocene moisture variation and related mechanisms remain controversial, owing to complex hydroclimatic conditions triggered by the landform of the large mountain-arid basin. Here, we employed geochemical proxies from typical aeolian sand-palaeosol sequences in the Gonghe Basin, northeastern QTP, together with Optically Stimulated Luminescence(OSL) dating, to reconstruct the pattern of effective moisture variation and associated mechanisms in this region. Our results indicate that the regional effective moisture was at its lowest until 9–8 ka, and approached a maximum during 8–4/3 ka of the middle Holocene. Afterwards, the climate became relatively dry in general, but with a transient humid interval around 2–1 ka. Our geochemical evidence indicates that the dry early Holocene probably can be attributed to a strong winter monsoon forced by remnant ice sheet, combined with the high evaporation caused by solar insolation. Also, shifts of humid-dry are closely linked to the Asian summer monsoonal strength and therefore the balance of evaporation-precipitation in the middle and late Holocene. Thus, the pattern of the Holocene effective moisture variation is characterized as the ‘monsoon model’ in a closed intermontane arid and semi-arid basin near the western Asian monsoonal limit.展开更多
We present the first systematic hydrogeological analysis to grain insights on the evolution of the Gonghe Basin in North China. Two hundred and forty seven water samples were collected from the Gonghe East Basin, Gong...We present the first systematic hydrogeological analysis to grain insights on the evolution of the Gonghe Basin in North China. Two hundred and forty seven water samples were collected from the Gonghe East Basin, Gonghe West Basin and Chaka Basin. The three groundwater systems of Gonghe Basin from west to east display different geochemical signatures. Based on Na/Cl ratios and Langelier-Ludwig diagram, it is inferred that the groundwater recharge potential of the Gonghe East Basin is much prosperous than the other areas. The renewability of the aquifers in alluvial-proluvial fan of Wahonghe and Gonghe East Basin margin is much faster than in the other basins. The groundwater quality in Chaka Salt Lake,Shazhuyu and Qiabuqia River Valley plains is low due to strong evaporation and cation exchange. The groundwater quality of the phreatic aquifers in the Qiabuqia River Valley plain is further deteriorated by mixing of high-arsenic and high-mineralization water from the deep fault structures.展开更多
The Hot Dry Rock(HDR)is considered as a clean and renewable energy,poised to significantly contribute to the global energy decarbonization agenda.Many HDR projects worldwide have accumulated valuable experience in eff...The Hot Dry Rock(HDR)is considered as a clean and renewable energy,poised to significantly contribute to the global energy decarbonization agenda.Many HDR projects worldwide have accumulated valuable experience in efficient drilling and completion,reservoir construction,and fracture simulation.In 2019,China Geological Survey(CGS)initiated a demonstration project of HDR exploration and production in the Gonghe Basin,aiming to overcome the setbacks faced by HDR projects.Over the ensuing four years,the Gonghe HDR project achieved the first power generation in 2021,followed by the second power generation test in 2022.After establishing the primary well group in the initial phase,two directional wells and one branch well were drilled.Noteworthy progress was made in successfully constructing the targeted reservoir,realizing inter-well connectivity,power generation and grid connection,implementing of the real-time micro-seismic monitoring.A closed-loop technical validation of the HDR exploration and production was completed.However,many technical challenges remain in the process of HDR industrialization,such as reservoir fracture network characterization,efficient drilling and completion,multiple fracturing treatment,continuous injection and production,as well as mitigation of induced seismicity and numerical simulation technology.展开更多
Previous research on climatic change in the Mid-Holocene in China indicates that it was a warm and humid period, accompanied by stronger summer monsoons, and it is defined as the Megatherrnal in the Holocene, or the H...Previous research on climatic change in the Mid-Holocene in China indicates that it was a warm and humid period, accompanied by stronger summer monsoons, and it is defined as the Megatherrnal in the Holocene, or the Holocene Optimum period. However, this conclusion is mainly dh'eeted at the monsoonal region in eastem China. In this research, we chose the Gonghe Basin in the northeastern Qinghai-Tibetan Plateau as the study area. Geochemical analysis of the profiles of paleosols and aeolian sand in the Santala area in the middle of the Gonghe Basin, along with OSL (optically stimulated luminescence) dating, indicates that the regional climate has experienced several warm-humid and cold-dry cycles since 11.8 ka. In particular, the Mid-Holocene (8.14.6 ka) was relatively cold and dry as evidenced by drastic fluctuations in chemical weathering degree and humidity, a higher aridity index, and sparse vegetation, accompanying increased winter monsoonal strength. In order to clarify whether this is an individual or local signal, we compared our geochemical analysis results with lake and peat records and aeolian de- posits of the monsoonal boundary region. The results indicate that the climate deteriorated widely, with declines in temperature and moisture, in the Mid-Holocene in the modem monsoonal boundary zone. Furthermore, the duration of climate deteriora- tion (relatively dry period) generally decreased from west to east in the aforementioned regions. Therefore, this dry phase in Gonghe Basin may be representative of dry events in Mid-Holocene in northem China. In addition, we discuss the reasons for this dry climate from several perspectives: (1) it probably can be attributed to a decline in summer monsoonal strength; (2) the regional evaporation loss (forced by high temperature) was not compensated by regional precipitation; (3) the thermal dynamic effect of the Qinghai-Tibetan Plateau.展开更多
An earthquake of M S=6.9 occurred in Gonghe County, Qinghai Province, China on April 26, 1990.This earthquake was followed by three larger aftershocks of M S=5.5 on May 7, 1990, M S=6.0 on Jan.3, 199...An earthquake of M S=6.9 occurred in Gonghe County, Qinghai Province, China on April 26, 1990.This earthquake was followed by three larger aftershocks of M S=5.5 on May 7, 1990, M S=6.0 on Jan.3, 1994, and M S=5.7 on Feb.16, 1994, consecutively. The moment tensors of these earthquakes as function of time were obtained by the technique of moment tensor inversion in frequency domain . The results inverted indicate that these earthquakes had a very similar focal mechanism of predominantly reverse faulting on a plane striking NWW, dipping to SSW.The scalar seismic moments of these earthquakes are M 0=9.4×10 18 Nm for the M S=6.9 event, 8.0×10 16 Nm for the M S=5.5 event, 4.9×10 17 Nm for the M S =6.0 event and 2.9×10 17 Nm for the M S=5.7 event, respectively. The results inverted also show that the source processes of these events were significantly different. The main shock had a very complex process, consisting of two distinct sub events with comparable sizes. The first sub event occurred in the first 12s, having a seismic moment of 4.7×10 18 Nm, and the second one continued from 31s to 41s, having a seismic moment of 2.5×10 18 Nm. In addition, a much smaller sub event, having a seismic moment of about 2.1×10 18 Nm, may exist in the interval of 12 s and 31 s, In contrast, the source processes of the three aftershocks are quite simple. The source time function of each of aftershocks is a single impulse, suggestting that each of aftershocks consists of a mainly uninterrupted rupture. The rise times and total rupture durations are 4 s and 11 s for the M S=5.5 event, 6 s and 16 s for the M S= 6.0 event and 6 s and 13 s for the M S=5.7 event, respectively.展开更多
Gonghe Basin belongs to arid and semi-arid climatic zone, where water resource is relatively scarce and desertification is serious, so it is necessary to find out water resources carrying capacity. By using fuzzy comp...Gonghe Basin belongs to arid and semi-arid climatic zone, where water resource is relatively scarce and desertification is serious, so it is necessary to find out water resources carrying capacity. By using fuzzy comprehensive evaluation method, the assessment on water resources carrying capacity in Gonghe Basin was conducted: Water resource carrying capacity of Gonghe County is less, while that of Guinan County and Chaka Town of Wulan County are greater; water resources of Gonghe Basin could sustain cultivated land of 652.6 thousand acres and grassland of 2 368.6 thousand acres respectively in 2020, water resources of Gonghe Basin could sustain cultivated land of 948.2 thousand acres and grassland of 2 247.6 thousand acres respectively in 2030.展开更多
The postseismic vertical deformation rates of the 1990 Gonghe M S=7.0 earthquake appears to have decreased exponentially. Based on Okada′s coseismic surface displacement solution caused by a uniform fault slip...The postseismic vertical deformation rates of the 1990 Gonghe M S=7.0 earthquake appears to have decreased exponentially. Based on Okada′s coseismic surface displacement solution caused by a uniform fault slip in an elastic homogeneous half space, we derived its postseismic surface displacement by using a single layer standard linear solid model, and further derived a simplified formula for determining the effective relaxation time and viscosity of the earth, which is independent of the dislocation parameters of the causative fault. From the postseismic vertical deformation of the 1990 Gonghe earthquake, we inferred that the effective relaxation time defined by τ = η/μ is 2.6 years, and the effective viscosity η is about 10 18 Pa·s.展开更多
Geochemical and grain size analysis on the DQ (Dongqi) profile from Gonghe Basin, northeastern Qinghai-Tibetan Plateau, indi- cates that regional climate has experienced several cold-dry and warm-wet cycles since th...Geochemical and grain size analysis on the DQ (Dongqi) profile from Gonghe Basin, northeastern Qinghai-Tibetan Plateau, indi- cates that regional climate has experienced several cold-dry and warm-wet cycles since the last glacial maximum (LGM). The cold and dry climate dominated the region before 15.82 cal. ka B.E due to stronger winter monsoon and weaker summer monsoon, but the climate was relatively cold and wetter prior to 21 cal. ka B.E. In 15.824.5 cal. ka B.E, summer monsoon strength in- creased and winter monsoon tended to be weaker, implying an obvious warm climate. Specifically, the relatively cold and dry condition appeared in 14.7-13.7 cal. ka B.E and 12.14.5 cal. ka B.R, respectively, while relatively warm and wet in 13.~12.1 cal. ka B.E. The winter and summer monsoonal strength presents frequent fluctuations in the Holocene and relatively warm and wet conditions emerged in 9.5~.0 cal. ka B.E due to stronger summer monsoon. From 7.0 to 5.1 cal. ka B.E, the cycle of cold-dry and warm-wet climate corresponds to frequent fluctuations of winter and summer monsoons. The climate becomes warm and wet in 5.1 2.7 cal. ka B.E, accompanying increased summer monsoon, but it tends to be cold and dry since 2.7 cal. ka B.R due to en- hanced winter monsoonal strength. In addition, the evolution of regional winter and summer monsoons is coincident with warm and cold records from the polar ice core. In other words, climatic change in the Gonghe Basin can be considered as a regional re- sponse to global climate change.展开更多
文摘The Gonghe Basin,a Cenozoic down-warped basin,is located in the northeastern part of the Qinghai-Xizang (Tibetan) Plateau,and spread over important nodes of the transfer of multiple blocks in the central orogenic belt in the NWW direction.It is also called “Qin Kun Fork” and “Gonghe Gap”.The basin has a high heat flow value and obvious thermal anomaly.The geothermal resources are mainly hot dry rock and underground hot water.In recent years,the mechanism of geothermal formation within the basin has been controversial.On the basis of understanding the knowledge of predecessors,this paper proposes the geothermal formation mechanism of the “heat source–heat transfer–heat reservoir and caprock–thermal system”of the Gonghe Basin from the perspective of a geological background through data integrationintegrated research-expert,discussion-graph,compilation-field verification and other processes: (1) Heat source: geophysical exploration and radioisotope calculations show that the heat source of heat in the basin has both the contribution of mantle and the participation of the earth's crust,but mainly the contribution of the deep mantle.(2) Heat transfer: The petrological properties of the basin and the exposed structure position of the surface hot springs show that one transfer mode is the material of the mantle source upwells and invades from the bottom,directly injecting heat;the other is that the deep fault conducts the deep heat of the basin to the middle and lower parts of the earth's crust,then the secondary fracture transfers the heat to the shallow part.(3) Heat reservoir and caprock: First,the convective strip-shaped heat reservoir exposed by the hot springs on the peripheral fault zone of the basin;second,the underlying hot dry rock layered heat reservoir and the upper new generation heat reservoir and caprock in the basin revealed by drilling data.(4) Thermal system: Based on the characteristics of the “heat source-heat transfer-heat reservoir and caprock”,it is preliminarily believed tha
基金Supported by the National Social Science Fund(06XMZ014)~~
文摘Using gradually regression analysis to establish the driving force model of utilized change of cultivated land in Gonghe County, and using path analysis, correlation analysis, partial correlation analysis and system dynamics method to inspect the effect of driving changing on cultivated land change under different change situations. Driving factors, action mechanism and process of utilized change of cultivated land were analyzed from the county territory scale level. At last, some corresponding policies and measures were put forward.
基金funded by the“Hot Dry Rock Resources Exploration and Production Demonstration Project”of the China Geological Survey(DD20190131,DD20190135,DD20211336).
文摘Hot dry rock(HDR)is a kind of clean energy with significant potential.Since the 1970s,the United States,Japan,France,Australia,and other countries have attempted to conduct several HDR development research projects to extract thermal energy by breaking through key technologies.However,up to now,the development of HDR is still in the research,development,and demonstration stage.An HDR exploration borehole(with 236℃ at a depth of 3705 m)was drilled into Triassic granite in the Gonghe Basin in northwest China in 2017.Subsequently,China Geological Survey(CGS)launched the HDR resources exploration and production demonstration project in 2019.After three years of efforts,a sequence of significant technological breakthroughs have been made,including the genetic model of deep heat sources,directional drilling and well completion in high-temperature hard rock,large-scale reservoir stimulation,reservoir characterization,and productivity evaluation,reservoir connectivity and flow circulation,efficient thermoelectric conversion,monitoring,and geological risk assessment,etc.Then the whole-process technological system for HDR exploration and production has been preliminarily established accordingly.The first power generation test was completed in November 2021.The results of this project will provide scientific support for HDR development and utilization in the future.
基金supported by the National Natural Science Foundation of China (41372180)the Open Foundation of MOE Key Laboratory of Western China’s Environmental System,Lanzhou University and the Fundamental Research Funds for the Central Universities (lzujbky-2015-bt01)
文摘Changes in the status of freshwater resources are a topic of major global, regional and local concern. This is especially so in the arid and semi-arid regions of China, where shortage of water resources plays a crucial role in limiting sustainable socioeconomic development, as well as in sustaining natural ecosystems. Recent climate change, as well as the effects of localized human activity, such as the use of water for irrigation agriculture, may have significant effects on the status of the water resources in the region. Here, we report the results of a study of changes in the areas of lakes in Gonghe Basin, northeastern Tibetan Plateau of China, over the last 60 years. The data were acquired from optical satellite images and demonstrate that the total water area of lakes in Gonghe Basin decreased significantly from the 1950s to 1980s. The cause is ascribed mainly to human activity including exploitation of farmland, against a background of increasing population; in addition, climatic data for the region demonstrate a minor drying trend during this period as the temperature increased slightly. After the construction of several reservoirs, significant amounts of water were redistributed to promote irrigation agriculture and we conclude that this caused a significant shrinkage of the natural lakes. However, both the area of farmland and the population size remained approximately constant after 1990. We conclude that the variation of the total area of lakes during the second period was mainly controlled by climatic factors (precipitation and temperature). As the regional temperature reached a new high, the area of some of the lakes decreased sharply before finally maintaining a relatively steady state. We emphasize that anthropogenic climate change and human activity have both significantly influenced the status of water resources in the arid and semi-arid regions of China.
基金financially supported by the Natural Science Foundation of China (Grant No. 41061022)China Scholarship Council
文摘With the analysis of the sources and formation mechanism of the clay minerals in the sediment core from the Dalianhai lake in the Gonghe Basin,northeastern Tibet-Qinghai Plateau,clay mineral composition proxies,grain-size and carbonate contents have been employed for high-resolution study in order to reconstruct East Asian Summer Monsoon (EASM) over the northeastern Tibet-Qinghai Plateau during the lastdeglacial.The study also extended to establish a relationship between vegetation cover changes and erosion during the last 14.5 ka with pollen record and clay mineral proxies.Smectite/kaolinite and smectite/(illite+chlorite) ratios allow us to assess hydrolysis conditions in lowlands and/or physical erosion process in highlands of the Gonghe Basin.Before 12.9 Cal ka BP,both mineralogical ratios show low values indicative of strong physical erosion in the basin with a dominant cold and dry phase.After 12.9 Cal ka BP,an increase in both mineralogical ratios indicates enhanced chemical weathering in the basin associated with a warm and humid climate.The beginning of Holocene is characterized by high smectite/(illite+chlorite) and smectite/kaolinite ratios that is synchronous as with deposition of many peat laminae,implying the best warm and humid conditions specifically between 8.0 to 5.5 Cal ka BP.The time interval after 5.0 Cai ka BP is characterized by a return to high physical erosion and low chemical weathering with dry climate conditions in the basin.Comparing variations of clay mineral assemblages with previous pollen results,we observe a rapid response in terms of chemical weathering and physical erosion intensity to a modification of the vegetation cover in the basin.
文摘An earthquake of Ms= 6, 9 occurred at the Gonghe, Qinghai Province, China on April 26, 1990. Three larger aftershocks took place at the same region, Ms= 5. 0 on May 7, 1990, Ms= 6. 0 on Jan. 3, 1994 and Ms= 5. 7on Feb. 16, 1994. The long-period recordings of the main shock from China Digital Seismograph Network (CDSN) are deconvolved for the source time functions by the correspondent0 recordings of the three aftershocks asempirical Green's functions (EGFs). No matter which aftershock is taken as EGF, the relative source time functions (RSTFs) Obtained are nearly identical. The RSTFs suggest the Ms= 6. 9 event consists of at least two subevents with approximately equal size whose occurrence times are about 30 s apart, the first one has a duration of 12 s and a rise time of about 5 s, and the second one has a duration of 17 s and a rise time of about & s. COmParing the RSTFs obtained from P- and SH-phases respectively, we notice that those from SH-phases are a slightly more complex than those from p-phases, implying other finer subevents exist during the process of the main shock. It is interesting that the results from the EGF deconvolution of long-Period way form data are in good agreement with the results from the moment tensor inversion and from the EGF deconvolution of broadband waveform data. Additionally, the two larger aftershocks are deconvolved for their RSTFs. The deconvolution results show that the processes of the Ms= 6. 0 event on Jan. 3, 1994 and the Ms= 5. 7 event on Feb. 16,1994 are quite simple, both RSTFs are single impulses.The RSTFs of the Ms= 6. 9 main shock obtained from different stations are noticed to be azimuthally dependent, whose shapes are a slightly different with different stations. However, the RSTFs of the two smaller aftershocks are not azimuthally dependent. The integrations of RSTFs over the processes are quite close to each other, i. e., the scalar seismic moments estimated from different stations are in good agreement. Finally the scalar seismic moments of the three aft
基金This study was supported by the Strategic Priority Research Program of Chinese Academy of Sciences, Pan-Third Pole Environment Study for a Green Silk Road (Grant No. XDA 2009000001)the National Natural Science Foundation of China (Grants No. 41977393 and 41671204)
文摘The northeastern Qinghai-Tibetan Plateau(QTP) of China is located at the triple junction of the Asian winter and summer monsoons and the westerlies, where paleoclimatic evolution has an important scientific significance for recognizing the spatial-temporal pattern of Asian monsoons in the past and predicting environmental change in the future. Nevertheless, the framework of the Holocene moisture variation and related mechanisms remain controversial, owing to complex hydroclimatic conditions triggered by the landform of the large mountain-arid basin. Here, we employed geochemical proxies from typical aeolian sand-palaeosol sequences in the Gonghe Basin, northeastern QTP, together with Optically Stimulated Luminescence(OSL) dating, to reconstruct the pattern of effective moisture variation and associated mechanisms in this region. Our results indicate that the regional effective moisture was at its lowest until 9–8 ka, and approached a maximum during 8–4/3 ka of the middle Holocene. Afterwards, the climate became relatively dry in general, but with a transient humid interval around 2–1 ka. Our geochemical evidence indicates that the dry early Holocene probably can be attributed to a strong winter monsoon forced by remnant ice sheet, combined with the high evaporation caused by solar insolation. Also, shifts of humid-dry are closely linked to the Asian summer monsoonal strength and therefore the balance of evaporation-precipitation in the middle and late Holocene. Thus, the pattern of the Holocene effective moisture variation is characterized as the ‘monsoon model’ in a closed intermontane arid and semi-arid basin near the western Asian monsoonal limit.
基金supported by National Natural Science Foundation of China(No. 41402234 and No. 41372243)the Fundamental Research Funds for Chinese Academy of Geological Sciences (No.YYWF201502)
文摘We present the first systematic hydrogeological analysis to grain insights on the evolution of the Gonghe Basin in North China. Two hundred and forty seven water samples were collected from the Gonghe East Basin, Gonghe West Basin and Chaka Basin. The three groundwater systems of Gonghe Basin from west to east display different geochemical signatures. Based on Na/Cl ratios and Langelier-Ludwig diagram, it is inferred that the groundwater recharge potential of the Gonghe East Basin is much prosperous than the other areas. The renewability of the aquifers in alluvial-proluvial fan of Wahonghe and Gonghe East Basin margin is much faster than in the other basins. The groundwater quality in Chaka Salt Lake,Shazhuyu and Qiabuqia River Valley plains is low due to strong evaporation and cation exchange. The groundwater quality of the phreatic aquifers in the Qiabuqia River Valley plain is further deteriorated by mixing of high-arsenic and high-mineralization water from the deep fault structures.
基金Funded by the“Investigation and Evaluation of the Hot Dry Rock Resources in the Guide-Dalianhai Area of the Gonghe Basin,Qinghai”(DD20211336,DD20211337,DD20211338)“Hot Dry Rock Resources Exploration and Production Demonstration Project”(DD20230018)of the China Geological Survey。
文摘The Hot Dry Rock(HDR)is considered as a clean and renewable energy,poised to significantly contribute to the global energy decarbonization agenda.Many HDR projects worldwide have accumulated valuable experience in efficient drilling and completion,reservoir construction,and fracture simulation.In 2019,China Geological Survey(CGS)initiated a demonstration project of HDR exploration and production in the Gonghe Basin,aiming to overcome the setbacks faced by HDR projects.Over the ensuing four years,the Gonghe HDR project achieved the first power generation in 2021,followed by the second power generation test in 2022.After establishing the primary well group in the initial phase,two directional wells and one branch well were drilled.Noteworthy progress was made in successfully constructing the targeted reservoir,realizing inter-well connectivity,power generation and grid connection,implementing of the real-time micro-seismic monitoring.A closed-loop technical validation of the HDR exploration and production was completed.However,many technical challenges remain in the process of HDR industrialization,such as reservoir fracture network characterization,efficient drilling and completion,multiple fracturing treatment,continuous injection and production,as well as mitigation of induced seismicity and numerical simulation technology.
基金funded by the National Natural Science Foundation of China (No. 40971005)
文摘Previous research on climatic change in the Mid-Holocene in China indicates that it was a warm and humid period, accompanied by stronger summer monsoons, and it is defined as the Megatherrnal in the Holocene, or the Holocene Optimum period. However, this conclusion is mainly dh'eeted at the monsoonal region in eastem China. In this research, we chose the Gonghe Basin in the northeastern Qinghai-Tibetan Plateau as the study area. Geochemical analysis of the profiles of paleosols and aeolian sand in the Santala area in the middle of the Gonghe Basin, along with OSL (optically stimulated luminescence) dating, indicates that the regional climate has experienced several warm-humid and cold-dry cycles since 11.8 ka. In particular, the Mid-Holocene (8.14.6 ka) was relatively cold and dry as evidenced by drastic fluctuations in chemical weathering degree and humidity, a higher aridity index, and sparse vegetation, accompanying increased winter monsoonal strength. In order to clarify whether this is an individual or local signal, we compared our geochemical analysis results with lake and peat records and aeolian de- posits of the monsoonal boundary region. The results indicate that the climate deteriorated widely, with declines in temperature and moisture, in the Mid-Holocene in the modem monsoonal boundary zone. Furthermore, the duration of climate deteriora- tion (relatively dry period) generally decreased from west to east in the aforementioned regions. Therefore, this dry phase in Gonghe Basin may be representative of dry events in Mid-Holocene in northem China. In addition, we discuss the reasons for this dry climate from several perspectives: (1) it probably can be attributed to a decline in summer monsoonal strength; (2) the regional evaporation loss (forced by high temperature) was not compensated by regional precipitation; (3) the thermal dynamic effect of the Qinghai-Tibetan Plateau.
文摘An earthquake of M S=6.9 occurred in Gonghe County, Qinghai Province, China on April 26, 1990.This earthquake was followed by three larger aftershocks of M S=5.5 on May 7, 1990, M S=6.0 on Jan.3, 1994, and M S=5.7 on Feb.16, 1994, consecutively. The moment tensors of these earthquakes as function of time were obtained by the technique of moment tensor inversion in frequency domain . The results inverted indicate that these earthquakes had a very similar focal mechanism of predominantly reverse faulting on a plane striking NWW, dipping to SSW.The scalar seismic moments of these earthquakes are M 0=9.4×10 18 Nm for the M S=6.9 event, 8.0×10 16 Nm for the M S=5.5 event, 4.9×10 17 Nm for the M S =6.0 event and 2.9×10 17 Nm for the M S=5.7 event, respectively. The results inverted also show that the source processes of these events were significantly different. The main shock had a very complex process, consisting of two distinct sub events with comparable sizes. The first sub event occurred in the first 12s, having a seismic moment of 4.7×10 18 Nm, and the second one continued from 31s to 41s, having a seismic moment of 2.5×10 18 Nm. In addition, a much smaller sub event, having a seismic moment of about 2.1×10 18 Nm, may exist in the interval of 12 s and 31 s, In contrast, the source processes of the three aftershocks are quite simple. The source time function of each of aftershocks is a single impulse, suggestting that each of aftershocks consists of a mainly uninterrupted rupture. The rise times and total rupture durations are 4 s and 11 s for the M S=5.5 event, 6 s and 16 s for the M S= 6.0 event and 6 s and 13 s for the M S=5.7 event, respectively.
基金supported Geological Survey Project of China Geological Survey-Geological SurveyEvaluation of Hydrogeological Environment of Gonghe Basin (1212011220944)
文摘Gonghe Basin belongs to arid and semi-arid climatic zone, where water resource is relatively scarce and desertification is serious, so it is necessary to find out water resources carrying capacity. By using fuzzy comprehensive evaluation method, the assessment on water resources carrying capacity in Gonghe Basin was conducted: Water resource carrying capacity of Gonghe County is less, while that of Guinan County and Chaka Town of Wulan County are greater; water resources of Gonghe Basin could sustain cultivated land of 652.6 thousand acres and grassland of 2 368.6 thousand acres respectively in 2020, water resources of Gonghe Basin could sustain cultivated land of 948.2 thousand acres and grassland of 2 247.6 thousand acres respectively in 2030.
文摘The postseismic vertical deformation rates of the 1990 Gonghe M S=7.0 earthquake appears to have decreased exponentially. Based on Okada′s coseismic surface displacement solution caused by a uniform fault slip in an elastic homogeneous half space, we derived its postseismic surface displacement by using a single layer standard linear solid model, and further derived a simplified formula for determining the effective relaxation time and viscosity of the earth, which is independent of the dislocation parameters of the causative fault. From the postseismic vertical deformation of the 1990 Gonghe earthquake, we inferred that the effective relaxation time defined by τ = η/μ is 2.6 years, and the effective viscosity η is about 10 18 Pa·s.
基金funded by National Natural Science Foundation of China (Nos. 40971005 and 41271215)
文摘Geochemical and grain size analysis on the DQ (Dongqi) profile from Gonghe Basin, northeastern Qinghai-Tibetan Plateau, indi- cates that regional climate has experienced several cold-dry and warm-wet cycles since the last glacial maximum (LGM). The cold and dry climate dominated the region before 15.82 cal. ka B.E due to stronger winter monsoon and weaker summer monsoon, but the climate was relatively cold and wetter prior to 21 cal. ka B.E. In 15.824.5 cal. ka B.E, summer monsoon strength in- creased and winter monsoon tended to be weaker, implying an obvious warm climate. Specifically, the relatively cold and dry condition appeared in 14.7-13.7 cal. ka B.E and 12.14.5 cal. ka B.R, respectively, while relatively warm and wet in 13.~12.1 cal. ka B.E. The winter and summer monsoonal strength presents frequent fluctuations in the Holocene and relatively warm and wet conditions emerged in 9.5~.0 cal. ka B.E due to stronger summer monsoon. From 7.0 to 5.1 cal. ka B.E, the cycle of cold-dry and warm-wet climate corresponds to frequent fluctuations of winter and summer monsoons. The climate becomes warm and wet in 5.1 2.7 cal. ka B.E, accompanying increased summer monsoon, but it tends to be cold and dry since 2.7 cal. ka B.R due to en- hanced winter monsoonal strength. In addition, the evolution of regional winter and summer monsoons is coincident with warm and cold records from the polar ice core. In other words, climatic change in the Gonghe Basin can be considered as a regional re- sponse to global climate change.