The wide distribution of Palmer amaranth (Amaranthus palmeri) in the southern US became a serious weed control problem prior to the extensive use of glyphosate-resistant crops. Currently glyphosate-resistant populatio...The wide distribution of Palmer amaranth (Amaranthus palmeri) in the southern US became a serious weed control problem prior to the extensive use of glyphosate-resistant crops. Currently glyphosate-resistant populations of Palmer amaranth occur in many areas of this geographic region creating an even more serious threat to crop production. Investigations were undertaken using four biotypes (one glyphosate-sensitive, one resistant from Georgia and two of unknown tolerance from Mississippi) of Palmer amaranth to assess bioassay techniques for the rapid detection and level of resistance in populations of this weed. These plants were characterized with respect to chlorophyll, betalain, and protein levels and immunological responses to an antibody of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) the target site of glyphosate. Only slight differences were found in four biotypes grown under greenhouse conditions regarding extractable soluble protein and chlorophyll content, but one biotype was found to be devoid of the red pigment, betalain. Measurement of early growth (seedling shoot elongation) of seedlings was a useful detection tool to determine glyphosate resistance. A leaf disc bioassay (using visual ratings and/or chlorophyll analysis) and an assay for shikimate accumulation were effective methods for determining herbicide resistance levels. The two unknown biotypes were found to be resistant to this herbicide. Some differences were found in the protein profiles of the biotypes, and western blots demonstrated a weak labeling of antibody in the glyphosate-sensitive biotype, whereas strong labeling occurred in the resistant plants. This latter point supports research by others, that increased copy number of the EPSPS gene (and increased EPSPS protein levels) is the resistance mechanism in this species. Results indicate the utility of certain bioassays for the determination of resistance and provide useful comparative information on the levels of inherent constituents among closely related plants.展开更多
qPCR (quantitative polymerase chain reaction) and random amplified polymorphic DNA (RAPD) were utilized to investigate genetic stability of Palmer amaranth cloned plants over 10 generations. DNA from original parent P...qPCR (quantitative polymerase chain reaction) and random amplified polymorphic DNA (RAPD) were utilized to investigate genetic stability of Palmer amaranth cloned plants over 10 generations. DNA from original parent Palmer amaranth plants (grown from seeds) was re-analyzed using qPCR, and confidence levels for determining ΔΔCt (threshold crossing) values were established. ANOVA was used to determine variation (margin of error) of these ΔΔCt values. This margin of error was applied to qPCR analysis of DNA from eight individual parent plants and their descendants (10th generation) so that possible differences in EPSPS (5-enolpyruvylshikimate-3-phosphate synthase) gene copy number could be ascertained. This method (and the associated error) indicated a lack of agreement in ΔΔCt values of DNA from plants of these two generations. qPCR analysis showed that in five out of eight clones, EPSPS gene copy number varied more than the calculated error (P = 0.05). A second technique to monitor genetic stability, RAPD was used to determine possible changes in genomic DNA due to extended cloning of these regenerated plants. RAPD analysis showed that four out of the eight clones differed when the profiles of the two generations were compared. Results show that qPCR and RAPD analysis point to the fact that several Palmer amaranth clones experienced changes in genome structure over 10 generations. Although the glyphosate resistance trait was retained, results suggest that during cloning studies, the genetic stability of macro-vegetatively propagated lines should be monitored.展开更多
文摘The wide distribution of Palmer amaranth (Amaranthus palmeri) in the southern US became a serious weed control problem prior to the extensive use of glyphosate-resistant crops. Currently glyphosate-resistant populations of Palmer amaranth occur in many areas of this geographic region creating an even more serious threat to crop production. Investigations were undertaken using four biotypes (one glyphosate-sensitive, one resistant from Georgia and two of unknown tolerance from Mississippi) of Palmer amaranth to assess bioassay techniques for the rapid detection and level of resistance in populations of this weed. These plants were characterized with respect to chlorophyll, betalain, and protein levels and immunological responses to an antibody of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) the target site of glyphosate. Only slight differences were found in four biotypes grown under greenhouse conditions regarding extractable soluble protein and chlorophyll content, but one biotype was found to be devoid of the red pigment, betalain. Measurement of early growth (seedling shoot elongation) of seedlings was a useful detection tool to determine glyphosate resistance. A leaf disc bioassay (using visual ratings and/or chlorophyll analysis) and an assay for shikimate accumulation were effective methods for determining herbicide resistance levels. The two unknown biotypes were found to be resistant to this herbicide. Some differences were found in the protein profiles of the biotypes, and western blots demonstrated a weak labeling of antibody in the glyphosate-sensitive biotype, whereas strong labeling occurred in the resistant plants. This latter point supports research by others, that increased copy number of the EPSPS gene (and increased EPSPS protein levels) is the resistance mechanism in this species. Results indicate the utility of certain bioassays for the determination of resistance and provide useful comparative information on the levels of inherent constituents among closely related plants.
文摘qPCR (quantitative polymerase chain reaction) and random amplified polymorphic DNA (RAPD) were utilized to investigate genetic stability of Palmer amaranth cloned plants over 10 generations. DNA from original parent Palmer amaranth plants (grown from seeds) was re-analyzed using qPCR, and confidence levels for determining ΔΔCt (threshold crossing) values were established. ANOVA was used to determine variation (margin of error) of these ΔΔCt values. This margin of error was applied to qPCR analysis of DNA from eight individual parent plants and their descendants (10th generation) so that possible differences in EPSPS (5-enolpyruvylshikimate-3-phosphate synthase) gene copy number could be ascertained. This method (and the associated error) indicated a lack of agreement in ΔΔCt values of DNA from plants of these two generations. qPCR analysis showed that in five out of eight clones, EPSPS gene copy number varied more than the calculated error (P = 0.05). A second technique to monitor genetic stability, RAPD was used to determine possible changes in genomic DNA due to extended cloning of these regenerated plants. RAPD analysis showed that four out of the eight clones differed when the profiles of the two generations were compared. Results show that qPCR and RAPD analysis point to the fact that several Palmer amaranth clones experienced changes in genome structure over 10 generations. Although the glyphosate resistance trait was retained, results suggest that during cloning studies, the genetic stability of macro-vegetatively propagated lines should be monitored.