The electrooxidation of the alcohol and aldehyde molecules instead of water coupled with H2 production has been proven to be effective for producing high-value fine chemicals under alkaline conditions.It is also notew...The electrooxidation of the alcohol and aldehyde molecules instead of water coupled with H2 production has been proven to be effective for producing high-value fine chemicals under alkaline conditions.It is also noteworthy that under acidic conditions,the stability of non-noble metal water oxidation catalysts remains a great challenge due to the lattice oxygen mechanism.Hence,we coupled the biomass-derived glucose oxidation for high-value D-glucaric acid(GRA)with ultra-durable hydrogen in acid solution over a Yb-MnO_(2)catalyst.The Mn^(3+)regulated by Yb atoms doped in MnO_(2)can effectively optimize the adsorption and desorption processes of the alcohol and aldehyde group and improve the intrinsic activity but cannot for H2O.The catalyst exhibited extremely high activity and stability after 50 h for glucose oxidation,inhibiting the lattice oxygen process and MnO4−formation,while the activity was quickly lost within 0.5 h for water oxidation.Density functional theory(DFT)calculations further demonstrated that glucose oxidation reaction proceeds preferentially due to the oxidation of aldehyde group with lower adsorption-free energy(−0.4 eV)than water(ΔG>0 eV),avoiding the lattice oxygen mechanism.This work suggests that biomass-derived glucose oxidation not only provides a cost-effective approach for high-value chemicals,but also shows an extremely potential as an alternative to acidic oxygen evolution reaction(OER)for ultradurable H2 production.展开更多
Metabolic biosensors are increasingly used in metabolic engineering and synthetic biology.In this study,using Saccha-romyces cerevisiae as a model system,we developed a methodology to identify promoter elements that a...Metabolic biosensors are increasingly used in metabolic engineering and synthetic biology.In this study,using Saccha-romyces cerevisiae as a model system,we developed a methodology to identify promoter elements that are responsive to glucaric acid.Through transcriptome analysis,it was found that multiple genes were upregulated when cells were exposed to high concentrations of glucaric acid.From the promoters of these candidate genes,the YCR012W promoter(PYCR012W)was observed to specifically respond to glucaric acid in a dose-dependent manner.To gain further insight into the binding site of glucaric acid-responsive activators,we truncated the promoter and revealed that the-564 to-464 bp regions of PYCR012W was essential for glucaric acid-responsive expression.To investigate the glucaric acid-responsive transcription factors,we predicted the transcription factor binding sites in the-564 to-464 bp region of PYCR012W and found that two transcription factors,Ash1p and Cbf1p,might be linked to glucaric acid responses.The strategies used in this study outline a method for the identification and development of metabolic biosensors.展开更多
基金supported by the National Natural Science Foundation of China(No.U19A2017)the Natural Science Foundation of Shandong Province(No.ZR2020QB120).
文摘The electrooxidation of the alcohol and aldehyde molecules instead of water coupled with H2 production has been proven to be effective for producing high-value fine chemicals under alkaline conditions.It is also noteworthy that under acidic conditions,the stability of non-noble metal water oxidation catalysts remains a great challenge due to the lattice oxygen mechanism.Hence,we coupled the biomass-derived glucose oxidation for high-value D-glucaric acid(GRA)with ultra-durable hydrogen in acid solution over a Yb-MnO_(2)catalyst.The Mn^(3+)regulated by Yb atoms doped in MnO_(2)can effectively optimize the adsorption and desorption processes of the alcohol and aldehyde group and improve the intrinsic activity but cannot for H2O.The catalyst exhibited extremely high activity and stability after 50 h for glucose oxidation,inhibiting the lattice oxygen process and MnO4−formation,while the activity was quickly lost within 0.5 h for water oxidation.Density functional theory(DFT)calculations further demonstrated that glucose oxidation reaction proceeds preferentially due to the oxidation of aldehyde group with lower adsorption-free energy(−0.4 eV)than water(ΔG>0 eV),avoiding the lattice oxygen mechanism.This work suggests that biomass-derived glucose oxidation not only provides a cost-effective approach for high-value chemicals,but also shows an extremely potential as an alternative to acidic oxygen evolution reaction(OER)for ultradurable H2 production.
基金This work was supported by the National Key R&D Program of China(2019YFA0905502)the National Natural Science Foundation of China(21877053)+1 种基金the Natural Science Foundation of Jiangsu Province(BK20181345)the Open Foundation of Jiangsu Key Laboratory of Industrial Biotechnology(KLIB-KF201807).
文摘Metabolic biosensors are increasingly used in metabolic engineering and synthetic biology.In this study,using Saccha-romyces cerevisiae as a model system,we developed a methodology to identify promoter elements that are responsive to glucaric acid.Through transcriptome analysis,it was found that multiple genes were upregulated when cells were exposed to high concentrations of glucaric acid.From the promoters of these candidate genes,the YCR012W promoter(PYCR012W)was observed to specifically respond to glucaric acid in a dose-dependent manner.To gain further insight into the binding site of glucaric acid-responsive activators,we truncated the promoter and revealed that the-564 to-464 bp regions of PYCR012W was essential for glucaric acid-responsive expression.To investigate the glucaric acid-responsive transcription factors,we predicted the transcription factor binding sites in the-564 to-464 bp region of PYCR012W and found that two transcription factors,Ash1p and Cbf1p,might be linked to glucaric acid responses.The strategies used in this study outline a method for the identification and development of metabolic biosensors.